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Abstract

Program execution must follow its execution path. Change in the path of the pro-
gram execution can be used by an adversary to execute malicious code stored in
memory. This malicious code execution leads to attacks such as buffer overflow,
return-to-libc, return-oriented programming (ROP), etc. Control-Flow Integrity
(CFI) is one of the mitigation techniques against such attacks. It enforces a pro-
gram to follow the path of execution defined by Control-Flow Graph (CFG). CFI
guarantees that program execution path can not be changed by an adversary and
the program flow integrity is maintained. Our CFI implementation mainly includes
generating regular expression of a program to validate path of execution and check-
ing the integrity of return address stored on the stack. During runtime, complete
path or history of execution is maintained, undefined change in the path of execu-
tion by an adversary is detected with the help of regular expression and by checking
integrity of the return address stored on the stack.
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Chapter 1

Introduction

Software programs have become part of our modern lives. Almost every event
of our daily life is dependent on a hardware component that is controlled by a
software. For example, kitchen appliances, building infrastructure like elevators
and air-conditioning, telephone systems that connect our mobiles, satellites for TV
and GPS, medical devices, etc. These systems involve some sort of micro-controller
run by a software that allows us to operate and interact with these system. An
error or bug in the software will have consequences. Therefore, rigorous testing
is performed on such systems before they are deployed. Despite the best efforts,
we come across events where software bugs cause disruptions in services they are
responsible to control. Micro-controller based devices and their associated software
is relatively easier to check and verify against presence of bugs due to its size. As
we move to complex software like multi-user operating systems and the applications
running on top of them; it becomes strenuously difficult to guarantee absence of
bugs. Thus, there is always a possibility that the software does not run as intended
– that is – it deviates from its intended functionality. Software bugs exist due to
various reasons. We have listed the most important ones below:

1. poor programming practices,

2. insufficient testing or poor design of test cases,

3. complex applications

(a) to address complexity and management, software is made modular

(b) modules could be system libraries or packages

(c) core application logic relies on modules that are written by others
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Figure 1.1 shows possibilities of flow of control in a software that has several
modular components: user written functions, or system libraries, or other applica-
tions that are present on the system.

Figure 1.1: Control flow in a software (Credit: Stamatos)

Pushing software into exploitable state has become an art that many people
master for fun or for profit [20]. The art involves predicting the kinds of mis-
takes engineers will make and quality assurance teams will miss. Therefore, it is
of paramount importance that a software program should not be pushed into an
exploitable state either by error or malicious intention.

In this work we have proposed and implemented a monitor function that en-
sures correct program execution path. Our approach is a type of CFI (control flow
integrity) technique that requires function instrumentation. A regular expression
is derived for a given program and the regular expression guides CFI checks. Our
work is limited to C and C++ programs. Our approach can be extended to other
programming environments.

Software written in C, C++ languages are likely to be unsafe due to various
reasons. Programmers deliberately avoid the use of safety features such as strong
typing and overflow detection for the sake of improved efficiency. A big class of soft-
ware bugs or vulnerabilities that may lead execution of a software into exploitable
state is buffer overflow. Skipping overflow detection may lead to buffer overflow
attack. When a function is called, its activation record is stored on a stack. One
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slot of activation record is reserved for buffer. An adversary can overflow data
in the buffer, under its control, beyond its stated capacity. When data stored in
buffer crosses buffer boundary, it causes buffer overflow. An adversary can use
buffer overflow attack to change control-flow of the program. Several techniques
and programming guidelines do exist to mitigate buffer overflow attacks. However,
there are other ways to hijack control-flow of a program and push the software to
exploitable state. A flow-based mitigation technique is used to check deviation of
a program’s execution path from its intended path. We shall introduce the reader
to various types of return address corruption techniques in next chapter along with
mitigation techniques that are proposed in literature. In Chapter 4, we shall in-
troduce our approach based on regular expressions. We shall show how regular
expressions succinctly represent all possible intended paths a program execution
might take based on the call graph of functions present in the source ode of a given
program. In Chapter 5, we show with the help of four different scenarios how our
function instrumentation transparently act as a monitor for control flow integrity
violations. We conclude with future works in Chapter 6.
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Chapter 2

Background

Program is a sequence of instructions to perform a particular task. Every program
has allocated memory which mainly consists of the code section, heap, stack, etc.
Before program execution, it has to be stored in main memory for execution. The
stack plays a very important role during program execution. The main purpose of
the stack is to store activation records (stack frames) of functions. An activation
record is divided into slots, and each slot is reserved for function arguments, return
address, stack frame pointer, buffer, and callee saved registers. Figure 2.1 shows a
stack on 32-bit Intel Architecture.

When a function is called, the activation record is pushed onto the stack. Stack
frame pointer is used to point to the previous stack frame. Activation records are
pushed on the stack in FILO (First In Last Out) order. When a function is called, it
must return to the location from where it is called. Therefore, one slot of activation
record is reserved for the return address. When a function is called, local variables,
return address, and registers are temporarily stored in the stack. When a function
returns, temporarily stored data on the stack is restored. The return address that
was stored on the stack is used to return to the location from where the function
was called. A part of stack memory is reserved for local variables. %ebp register
is base pointer. All the function parameters and local variables are at a constant
offset from base pointer %ebp. %esp is current stack pointer. When data is pushed
on or popped off the stack, %esp changes.

2.1 Stack Corruption Techniques

In activation record, the stack has one slot reserved for the return address. When
a function is called, the return address is stored on the stack. The return address
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Figure 2.1: Linux process memory layout

points to the location where the function is supposed to return after its execution
is over. An adversary can change the return address stored on the stack to the
location where the malicious function is stored. Therefore return address is very
important factor during program execution, and it is needed to be secured from an
adversary.

2.1.1 Corrupting Callee-Saved Registers

To increase the efficiency of the program, the compiler tries to use registers instead
of memory. Memory access takes more time compared to registers. However, when
all registers are in use, and new process (program in execution) needs registers, some
of the in-use registers are spilled on the stack. An adversary can take advantage of
this to hijack control-flow of the program.

When one function (caller) calls another function (callee), all the registers which
caller is using are temporarily stored on the stack. When a function returns, all the
stored registers are restored. An adversary can corrupt these callee-saved registers.
This can be a problem if callee uses restored registers for CFI check.
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2.1.2 Corrupting System Call Return Address

The operating system has two modes of operation:

• Kernel-mode: All user programs execute in this mode.

• User-mode: All kernel programs execute in this mode.

. Whenever there is a system call, control moves from user-mode to kernel-mode.
After execution of system call procedure, control returns to user-mode from kernel-
mode. However, when control is shifting from user-mode to kernel-mode and back
from kernel-mode to user-mode, there is a chance that adversary can take advantage
of this control shift. The main reason behind this scope of the attack is that user-
mode applications are completely separated from the kernel.

When a system call takes place, before shifting control to kernel mode, the
return address is stored on the user-mode stack. While returning from kernel-mode
to user-mode, kernel reads the return address from the user-mode stack. User-mode
CFI instruments user-mode applications and not the kernel [2].

“A special instruction "sysenter" was introduced in x86 32-bit architecture to
speedup the transition between kernel-mode and user-mode” [2]. The sysenter in-
struction execution does not save any state information. Therefore the return ad-
dress is saved on the user-mode stack by Windows before executing this instruction.
When a system call procedure execution is completed, kernel reads the return ad-
dress from the user-mode stack. An adversary can overwrite the return address with
the address of malicious code, and this leads to control-flow hijack and bypasses the
CFI.

2.1.3 Buffer Overflow

When one function (caller) calls another function (callee) activation record (stack
frame) is temporarily stored on the stack. The activation record has return address
and buffer as shown in 2.2. An adversary can fill the data into the buffer more than
buffer capacity. This causes buffer overflow. The return address stored on the stack
can be overwritten with buffer overflow attack.

Figure 2.2 shows one slot is allocated to buffer in activation record of a function.
Local variable are stored in buffer. Frame pointer is pointer to caller frame. One
slot is reserved for return address.
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Figure 2.2: Buffer overflow

2.1.4 Return-to-libc

Return-to-libc is one of the attack techniques. It uses buffer overflow attack to
execute code present in process executable memory. When the return address stored
on the stack, an adversary triggers buffer overflow attack which replaces return
address stored on the stack to address of subroutine present in the library. libc is
standard C library. An adversary uses libc library for return-to-libc [18] attack.
NX bit feature used to make some part of memory non-executable. NX bit feature
is bypassed by this attack as it uses only executable code to trigger an attack.

2.1.5 Return-Oriented Programming

This is one of the security exploit techniques. An adversary tries to execute code
in the presence of defenses such as W ⊕ X. First, an adversary triggers buffer
overflow attack to hijack control-flow of the program. An adversary executes chosen
machine sequences present in memory [19]. Execution of chosen machine sequences
allows an adversary to perform an arbitrary operation. Software must follow it’s
execution path. An adversary can hijack control-flow of the program and direct it
to malicious code. Therefore we need to deal with attacks such as buffer overflow.
The vulnerabilities in the software can be exploited by attackers to get memory
access and trigger attacks such as buffer overflow, return-to-libc, ROP, etc. An
adversary can use flaws in software to change control-flow of the program. Many C
library functions are unsafe. C library function strcpy copies input data into buffer.
strcpy function does not check the size of input. An adversary uses unsafe library
functions to trigger buffer overflow attack. strncpy is introduced to overcome
drawback of strcpy. strncpy copies input data of size n. However this is not
concrete method to protect a program from buffer overflow attack.
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2.2 Protecting Return Address

There are many mitigation techniques that have been proposed to protect return
address on stack. Here we discuss such mitigation techniques.

2.2.1 StackGuard: canary

Figure 2.3: StackGuard: canary

In buffer overflow attack, an adversary tries to fill data into buffer more than
buffer capacity. A buffer overflow occurs when data stored in buffer crosses buffer
boundary. Stack canary [5] is one of the mitigation techniques which protects
against buffer overflow attack. Canary is placed above buffer in the stack frame. It
monitors buffer overflow. Whenever buffer overflow occurs, canary data gets cor-
rupted or overwritten before return address gets overwritten. A canary is added
just above buffer as shown in Figure 2.3. During buffer overflow, canary gets cor-
rupted or overwritten before return address stored on the stack. Checking integrity
of canary before function return helps to detect buffer overflow.

Drawback: A canary is embedded above buffer in activation record. An adversary
can change the return address stored on the stack without changing canary. An
adversary can store a pointer in the buffer. This pointer points to the return address
stored on the stack. Using this pointer, an adversary can change the return address.

2.2.2 ASLR (Address Space Layout Randomization)

Address Space Layout Randomization (ASLR) is another mitigation technique. To
change data stored on the stack, an adversary must know stack address. Random-
ization of memory layout reduces the chances of buffer overflow attack by making
more difficult for an adversary to find stack address. Randomly arranged address
space layout reduces the chances of buffer overflow attack by making more difficult
for an adversary to find stack address.
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Drawback: Over the years, powerful attacks have been invented that make an
adversary more powerful. ASLR security technique randomizes only base pointer
of the stack, heap, and library. The stack frame structure remains same.

2.2.3 PointGuard

This security technique protects function pointers stored in memory. It encrypts all
the function pointers stored in memory. During program execution, a random key
is generated. Whenever the pointer is stored in memory or retrieve from memory,
the pointer is XORed with the key. When an adversary overwrites pointer stored
in memory, after XORing, the pointer will point to a random location in memory.

Figure 2.4: Normal point dereference [13]

Figure 2.4 shows normal pointer dereference. A function pointer is overwritten
to point to attack code.

Figure 2.5 shows PointGuard dereference. A function pointer is overwritten to
point to attack code. When pointer is fetched, it decrypts to random value.

Drawback: An adversary should not be able to change key. This technique must
be fast. If unencrypted pointers are spilled on the stack, an adversary can change
or corrupt them.

9



Figure 2.5: PointGuard dereference [13]

2.2.4 W ⊕X & NX-bit

An adversary can inject malicious code into data section of memory and thereafter
change control-flow of the program. Certain parts of memory can be made non-
executable to avoid malicious code execution from data section. W ⊕X is security
feature used to protect memory which can be either writable or executable. NX-bit
is used to divide memory into data section and code section.

Drawback: NX bit feature used to make some part of memory non-executable.
NX bit feature can be bypassed by return-to-libc attack as it uses only executable
code to trigger an attack.
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Chapter 3

Related Work

There are many mitigation techniques that can be used against attacks such as
buffer overflow, return-to-libc, ROP, etc. However, some of these techniques are
impractical, and they are based on hardware. They do not provide complete pro-
tection from attacks. Stack canary technique is used to protect return address
stored on the stack. However, an adversary can change the return address without
changing canary. Over the years powerful attacks have been invented that make
an adversary more powerful. Some mitigation techniques have high performance
overhead. With the increase in security performance, overhead is also increased.
CFI is the most promising technique against attacks such as buffer overflow. It
enforces the program to follow the path defined by CFG. CFG consists of nodes
which represent functions in a program. CFG is determined before program ex-
ecution and applied during program execution. Forward edges of CFG represent
function calls. During static analysis phase, destination of forward edges are com-
puted, and they are enforced during program execution. CFI technique monitors
program flow and ensures that control-flow of the program follows CFG. In recent
years, Intel’s architects have turned to control-flow enforcement technology (CET)
[14].
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3.1 CFI with Label Checking

Whenever there is a function call, the correct destination must be called. This
technique uses labels which are randomly generated unique numbers. This technique
considers three new instructions for CFI instrumentation. Label ID is used to add
the label at the start of destination. call ID DST calls destination only if the
destination has Label ID at the start of it’s code. ret ID is used to return to
caller [1].

Figure 3.1: Label checking [1]

In Figure 3.1, Label 10 and Label 20 are assigned to function main() and
addition() respectively. In original section, there is call from main to addition.
After execution of addition, control returns to main. In instrumentation section,
call 20 R is executed, label at destination, i.e., 20 and label present in call in-
struction are compared. When function returns, label of caller and label present in
return instruction are compared. If comparison fails, it indicates CFI-failure.

Assumptions:

• Unique IDs: ID conflict may create problem while label checking. Therefore
IDs used in CFI must be unique.

• Non writable code: If code memory is writable, CFI implementation code can
be corrupted. Therefore code section memory must not be writable.

• Non executable DATA: If data section is executable, an adversary can add
executable malicious code to data section.

12



Code Instrumentation [1]
Assembly code Comment

1 jump ecx ; a jump instruction

can be instrumented as:

1 cmp [ecx], 12345678h ; compare data at destination
2 jne error_label ; if not ID value, then fail
3 lae ecx , [ecx+4] ; skip ID data at destination
4 jmp ecx ; jump to destination

In above code instrumentation, jump ecx is instrumented. ecx has destination
address. 12345678h is label added at the start of destination. If labels are matched
control jumps to destination otherwise, it fails.

Drawback: Code instrumentation is not possible all the time. An adversary can
change the return address stored on the stack and hijack control-flow of the program.
Therefore this technique does not ensure the integrity of control-flow of the program.
This technique does not have protection against buffer overflow attack.

3.2 CCFIR (Compact Control Flow Integrity and
Randomization)

This mitigation technique is used to secure function pointer and return address.
CCFIR [8] performs enforcement by redirecting control-flow transfer through new
code section called "Springboard" which works as mediator or controller. Whenever
there is control-flow jump, it forces control-flow to pass through Springboard section.
An adversary can not insert jump in the middle of instructions.

In Figure 3.2, in the original section, function foo is called, and control returns
to next line of call foo. In the Hardened section, redirection is implemented
through Springboard. Control-flow is directed to Springboard and returned through
this section only.

Drawback: It has a compatibility issue. Figure 3.3 shows call from a protected
module to an unprotected module. Once control reaches to an unprotected module,
the application can no longer remain secure through Springboard. Rewriting every
module is not possible all the time.

13



Figure 3.2: CCFIR technique [8]

3.3 CCFI (Cryptographically-enforced Control Flow
Integrity)

CCFI [7] protects function pointer and return address with the help of Message
Authentication Code (MAC). Following function is used to compute MAC.

MAC(K, pointer, class)

MAC function consists of three parameters: K is a secret key, pointer is function
pointer or return address, and class is a flag to identify between a function pointer
or return address. MAC is used to protect the return address saved on the stack.
MAC of the return address is computed when the return address is stored on the
stack. When a function returns, MAC is re-calculated and compared with stored
MAC. Both MACs must match. If an adversary changes the return address stored
on the stack, re-calculated MAC and stored MAC does not match, and it indicates
an error.

Drawback: As shown in Figure 3.4, If an adversary knows old function pointer
and MAC, the return address and MAC stored on the stack can be overwritten with
the old value of the return address and MAC.

14



Figure 3.3: CCFIR drawback [8]

3.4 CFCSS (Control Flow Checking by Software
Signature)

CFCSS [9] one of the mitigation techniques which uses software signature. The
program is divided into blocks called nodes. Each node is assigned a unique number
called signature (s). The signature difference (d) is XOR of signature of a source
(caller) and destination (callee) node. During compile-time, the signature difference
is calculated and assigned to each node. Runtime signature (G) is XOR of signature
difference (d) and signature of a source node. During runtime, G is calculated and
compared with the signature of destination node. G and signature of destination
node must match for correct flow between a source node and destination node.

Figure 3.6 shows, V1 to V2 is correct branching as G2 and s2 are matched. V1
to V4 is illegal branch as G4 is not matched with s4.

Drawback: A unique signature is assigned to each node of the program. During
compile-time, the signature difference (d) is computed and assigned to each node.
Figure 3.6 shows V1 and V3 have a different signature. Therefore there are two
values of d assigned to V5. To assign a single value of d to V5, the same signature
must be assigned to V1 and V3. This violates the constraint of software signature.

Figure 3.6 shows, V5 has two values of signature difference (d). To assign single
signature difference (d) to V5, signature of V1 and V3 must be same.

15



Figure 3.4: CCFI MAC overwritten [7]

3.5 IFCC (Indirect Function Call Check)

IFCC [6] protects indirect calls by generating jump table. Jump table consists of
jump instructions to function. Instrumentation replaces each function with the
address of the corresponding entry in the jump table.

Drawback: The address of jump table is stored on the stack. The address of
jump table can be overwritten by bogus jump table and adversary can execute the
malicious function.
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Figure 3.5: CFCSS technique[9]

Figure 3.6: CFCSS branch-in-fan [9]
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Chapter 4

Our CFI Implementation

There are many CFI techniques that include Control Flow Checking with La-
bel Checking, Control Flow Checking by Software Signature (CFCSS) [9], Com-
pact Control Flow Integrity and Randomization (CCFIR) [8], Cryptographically-
enforced Control Flow Integrity (CCFI) [7], Indirect Function Call Check (IFCC)
[6], etc. However, these CFI techniques have practical limitations and performance
overhead. Many of these CFI techniques do not have protection against buffer over-
flow attack. Some of these do not work in case of recursive calls (a function calling
itself).

Our approach of CFI implementation mainly includes generating regular expres-
sion of a program which represents the CFG. The first step of implementation is to
derive CFG of a program in the form of DOT (Graph Descriptive Language) file.
We have used egypt-tool to generate CFG of a program. Regular expression of the
program is generated from CFG. Regular expression of the graph is derived using
Brzozowski’s algorithm [11]. We maintain execution path of a program. Execution
paths that satisfy the regular expression are considered the valid paths of execu-
tion. Execution paths that do not satisfy the regular expression are considered as
the invalid paths of execution. All the invalid paths generate an error as they do
not satisfy regular expression. We also check integrity of the return address stored
on the stack. We maintain a replica of the stack consists of the return address. An
adversary can hijack control-flow of the program by changing return address stored
on the stack. Checking integrity of the return address stored on the stack helps to
protect control-flow integrity of a program.

We consider complete execution path of the program for CFI implementation.
Undefined change in the path of execution by an adversary can be detected with
the help of regular expression. Our CFI implementation mainly includes: deriving

18



CFG of a program, deriving a regular expression of a program, and checking for
CFI violation.

Figure 4.1: CFI implementation view
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4.1 Derive CFG of a Program

We have used egypt-tool (version 1.1.0) [16] for deriving CFG of a program.
Below mentioned command is used to generate the graph of main.c program.

gengraph -o graph -t png main.c

Program: main.c

1 #include <stdio.h >
2 int Sub(int x, int y){
3 int z = x - y;
4 Display(z);
5 return 0;
6 }
7 int Power(int x, int y){
8 Addition(x, y);
9 Sub(x, y);

10 return 0;
11 }
12 int Addition(int x, int y){
13 return x + y;
14 }
15 int Display(int x){
16 printf("%d", x);
17 return 0;
18 }
19 int Division(int x, int y){
20 int z = x / y;
21 Display(z);
22 return z;
23 }
24
25 int main(void){
26 Division (40, 5);
27 Addition(2, 4);
28 Power(2, 5);
29 return 0;
30 }
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Output: dot (Graph Descriptive Language) file

1 digraph callgraph {
2 "Power" -> "Addition" [style=solid];
3 "Power" -> "Sub" [style=solid];
4 "Division" -> "Display" [style=solid];
5 "main" -> "Power" [style=solid];
6 "main" -> "Addition" [style=solid];
7 "main" -> "Division" [style=solid];
8 "Sub" -> "Display" [style=solid];
9 }

Command to convert dot file to pn file is shown follow below.

dot -Tps *.dot -o *.pn

Figure 4.2: CFG of main.c

Figure 4.3 shows, matrix list form of CFG shown in 4.2. In each chain, the first
node is a caller, and subsequent nodes are callee.
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Figure 4.3: Matrix list of CFG

Following commands are used to run main.c program with CFI check.
1. gcc -finstrument-functions -std=c++0x -c -o main.o main.c
2. g++ -g -rdynamic -std=c++0x -c -o trace.o func.cpp
3. g++ -g -rdynamic -std=c++0x trace.o main.o -o cfimonitor
4. ./cfimonitor

4.2 Derive Regular Expression of a Program

We have used Brzozowski’s Algorithm [11] to generate a regular expression. This
algorithm is an algebraic method. It is divided into two parts: the first part is to
convert CFG to Deterministic Finite Automata (DFA) and the second part is to
convert DFA to a regular expression. It creates a system of linear equations. A reg-
ular expression can be obtained by solving the system of linear equations. Following
Brzozowski’s Algorithm shows conversion from DFA to a regular expression.
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Program: CFG to DFA

1 for i in range (0, n)
2 for j in range (0, n)
3 A[i, j] <- 0
4 end for
5 B[i] <- 0
6 end for
7 for i in range (0, n-1)
8 if node i represents an entry block then
9 A[0, i+1] <- node i

10 end if
11 if node i represents an exit block then
12 B[i+1] <- e
13 end if
14 end for
15 for i in range (0, n-1)
16 for j in range (0, n-1)
17 if there is an edge from node i to node j
18 A[i+1, j+1] <- node j
19 end if
20 end for
21 end for

Program: DFA to Regular Expression

1 for k in range(0, n)
2 B[k] <- (star(A[k, k])) B[k]
3 for j in range(0, k-1)
4 A[k, j] <- (star(A[k, k])) * A[k, j]
5 end for
6 for i in range(0, k-1)
7 B[i] <- B[i] + A[i, k] * B[k]
8 for j in range(0, k-1)
9 A[i, j] <- A[i, j] + A[i, k] * A[k, j]

10 end for
11 end for
12 for i in range(0, k-1)
13 A[i, k] <- 0
14 end for
15 end for

Following regular expression will be generated for CFG shown in Figure 4.4.

Regular Expression: main(Addition | Division.Display)

23



Figure 4.4: CFG of regular expression main(Addition | Division.Display)

All the strings, which satisfy regular expression, are considered the valid paths of
execution. The valid paths of execution for main(Addition | Division.Display)
regular expression includes main->Addition, main->Division->Display, etc.

Figure 4.5: Invalid path of execution

As shown in Figure 4.5, main->Addition->Display is considered as invalid
path of execution since it does not satisfy regular expression main(Addition |
Division.Display). Figure 4.5 shows red arrow which represents undefined jump
from Addition() to Display() within CFG.
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4.3 Defining CFI Violation

CFI violation is defined as an undefined change in the control-flow of execution or
calling a function that is not a part of the program. Execution path which does not
satisfy regular expression is invalid path of control-flow.

CFI enforces control-flow of the program to follow defined path. These paths of
execution can be defined with CFG. We first derive CFG of a program which is in
the form of DOT (Graph Descriptive Language) file.

An undefined control-flow jump, which is not a part of CFG, is detected with
the help of regular expression. This strengthens the security of control-flow of a
program.

While returning from called function, we check the integrity of return address
stored on the stack. An adversary can overwrite the return address of a function.
Change in return address may lead to the hijacking of a control-flow of the program.
Checking return address on the stack ensures the correct flow of the program.

Figure 4.6: CFI violation in return call

Figure 4.6 shows CFI violation while returning from function sqrt() which is
called from fact(). Program control is supposed to return to correct caller that is
function fact(). However, an adversary can change the return address and direct
the program flow to continue from main() function.

This CFI violation can be detected by checking return address stored on the
stack. Before sqrt() is called, we store the return address. We compare return
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address with the stored return address. This can detect a change in the return
address on the stack. We maintain a replica of the stack which consists of only
return address to detect a change in the return address. This helps to check the
integrity of return address stored on the stack.

Figure 4.7: CFI violation in function call

Figure 4.7 shows undefined jump from sqrt() function to adversary function
malicious() which is not a part of program. sqrt() is supposed to return to
fact(). However an adversary changes return address to address of malicious()
function. When control reaches to function malicious(), before it’s execution
starts, regular expression detects undefined control-flow of the program. Regular
expression takes care of all the undefined control-flow paths.
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4.4 Monitor Function

We have implemented a monitoring functionality that observes all changes in the
control-flow of the program. Whenever a function call or a return statement is
executed, this functionality kicks into action.

• Before program execution starts, monitor function is initialized. It converts
DOT file data into matrix list. Following map is used to store mapping
between caller and callee.

map <string, list<string> > callee_graph;

callee_graph is used to store CFG in matrix list form. First parameter of
callee_graph is caller function and second parameter of callee_graph is
list of callee.

• For complex CFG, regular expression generated will be long. We have assigned
a unique number to each function node of CFG. A regular expression consists
of numbers assigned to functions instead of the function names. This reduces
a length of regular expression. Following map is used for mapping between
the function name and it’s unique number.

map <string, int> funcname_to_funcnum;

• The last step of monitor function initialization is to generate a regular expres-
sion. Brzozowski’s algorithm [11] is used to generate a regular expression.
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4.5 Function Instrumentation

This is a part of monitor function. When function call statement is executed, before
callee is executed, following function is called.

void __cyg_profile_func_enter(void*, void*); [15]

In __cyg_profile_func_enter() [15] function, callee function name is fetched
using backtrace_symbols() [17] function. The function name is converted into it’s
unique number using funcname_to_funcnummap. We maintain function_call_chain
using these unique numbers of callee functions. This function_call_chain must
satisfy regular expression. This indicates control-flow of a program is within CFG.
regex_match(func_call_chain, txt_regex) function is used to check whether
function_call_chain satisfies regular expression.

void __cyg_profile_func_exit(void*, void*); [15]

Before callee function returns to caller, __cyg_profile_func_exit() [15] func-
tion is called. In __cyg_profile_func_exit() [15] function, __builtin_return_address(1)
function is used to get the return address stored on the stack. We maintain replica
of the stack which consists of return address. whenever a function is called, we
maintain return address in replica of the stack. when function returns, we com-
pare return address stored on replica of the stack with return address stored on the
actual stack to check CFI violation.

28



Chapter 5

CFI Violation and Detection

CFI violation is defined as an undefined change in the control-flow of execution or
calling a function that is not a part of the program. Here we discuss four scenarios
of CFI violation and detection.

5.1 Scenario 1: Buffer Overflow

In Buffer_overflow.c program, an adversary is trying to corrupt return address
stored on the stack for function foo(). foo() function has buffer in its activation
record. An adversary is using buffer to corrupt return address of foo() stored on
stack.

Figure 5.1: Buffer overflow.
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Example 1: Buffer_overflow.c

1 #include <stdio.h >
2 void abc(void ){}
3
4 void foo(void){
5 void (* buffer [12])( void);
6 int k;
7 for(k = 0 ; k < 128 ; k++)
8 buffer[k] = abc;
9 }

10 int addition(void){
11 foo();
12 return 0;
13 }
14 int main(void){
15 addition ();
16 return 0;
17 }

Figure 5.2: Buffer_overflow.c: assembly code of addition() function

Figure 5.3: Buffer_overflow.c: stack content
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Figure 5.2 shows assembly code for addition() function. 400502 is return
address of function foo(). Figure 5.3 shows return address of function foo() stored
on the stack.

Figure 5.4: Buffer_overflow.c: CFI violation detection

Figure 5.4 shows execution of Buffer_overflow.c with our CFI check. The pro-
gram execution starts with main(). Before main() executes, monitor function is
initialized. Each function name is assigned a unique number. Following regular
expression is generated.

Regular Expression for Buffer_overflow.c: 0(|1(|2(|3)))

When main() function starts it’s execution function_call_chain becomes 0. Func-
tion main() calls addition(). Therefore function_call_chain becomes 01. addition()
calls foo(). function_call_chain becomes 012. Return address of foo() is cor-
rupted using buffer overflow. This causes error message (Error: Return address
is changed) and program termination.
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5.2 Scenario 2: Buffer Overflow with Recursion

Figure 5.6 shows regular expression for Buffer_overflow_with_recursion.c program.
Execution starts with main(). foo() function is recursively called. The return
address is changed when value of x reaches to 0 using buffer overflow attack.

Figure 5.5: Buffer overflow with recursion

Example 2: Buffer_overflow_with_recursion.c

1 #include <stdio.h >
2 void foo(int x){
3 if(x == 0)
4 {
5 int k;
6 char buffer [12];
7 for(k = 0 ; k < 128 ; k++)
8 buffer[k] = ’0’;
9 }

10 if(x>0)
11 foo(x-1);
12 }
13 int main(void){
14 foo (2);
15 return 0;
16 }
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Figure 5.6: Buffer_overflow_with_recursion.c: output

5.3 Scenario 3: Jump to Adversary Function

In Adversary_function_without_cfi.c program, activation record of foo() has
pointer (int type), buffer, and buffer1. Difference between return address of
foo() stored on the stack and address of buffer1 is 56. Therefore we have incre-
mented pointer by 56 to excess return address of foo(). Once pointer is pointing
to the return address stored on the stack. we have changed the return address of
foo() to address of attack() function.
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Figure 5.7: Jump to adversary function

Example 3.1: Adversary_function_without_cfi.c

1 void attack(void){
2 printf("Attacked");
3 }
4 void foo(int a, int b){
5 int *pointer;
6 char buffer [5];
7 int c = b + a;
8 char buffer1 [10];
9 pointer = buffer1 + 56;

10 printf("Return address stored on stack: %p", *pointer);
11 *pointer = 4195655;
12 }
13 int main(void){
14 printf("In main");
15 foo(4, 5);
16 printf("end");
17 return 0;
18 }

Figure 5.8: Adversary_function_without_cfi.c: output
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Figure 5.9: Adversary_function_without_cfi.c: buffer1 address

Figure 5.9 shows buffer1 is stored at 30 bytes below stack pointer. Frame pointer
is 8 bytes. Therefore buffer1 and return address has difference of 38 bytes. 38 is
hexadecimal value. If we convert it into decimal, it is 56. Therefore 56 is added to
buffer1 to point to return address.

Figure 5.10: Adversary_function_without_cfi.c: assembly code of function main()

Figure 5.10 shows return address of foo() which is next instruction to be exe-
cuted after foo() returns. Figure 5.7 shows program execution starts with main().
There is call to function foo() from main(). The return address of foo() is over-
written with address of attack() function. Therefore program control does not
return to main(). attack() function is executed instead of returning to main().
attack() is not a part of CFG. This is undefined control-flow of the program.
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Figure 5.11: Adversary_function_without_cfi.c: stack content

Figure 5.11 shows the return address stored on the stack.

Example 3.2: Adversary_function_with_cfi.c

1 void attack(void){
2 printf("Attacked");
3 }
4 void foo(int a, int b){
5 int *pointer;
6 char buffer [5];
7 int c = b + a;
8 char buffer1 [10];
9 pointer = buffer1 + 56;

10 printf("Return address stored on stack: %p", *pointer);
11 *pointer = 4714583 ;
12 }
13 int main(void){
14 printf("In main");
15 foo(4,5);
16 printf("end");
17 return 0;
18 }

In Adversary_function_with_cfi.c program, value assigned to pointer is differ-
ent as Adversary_function_with_cfi.c is compiled with monitor function to check
cfi violation.
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Figure 5.12: Adversary_function_with_cfi.c: output

5.4 Scenario 4: Skipping Function Call

In Skip_function_call.c program, return address is increased to skip function call
statement sub(3, 4). Control-flow of the program must follow defined path of
execution. Skipping function call is one the CFI violations.

Figure 5.13: Skipping function call
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Example 4: Skip_function_call.c

1 void sub(int x, int y){
2 printf("In sub");
3 int b=0;
4 }
5 void multi(int a, int b){
6 int *pointer;
7 char buffer1 [5];
8 int c = a + b;
9 char buffer2 [10];

10 pointer = buffer2 + 56;
11 printf("Return Address: %p" ,*pointer);
12 printf("In multi");
13 *pointer = *pointer + 15;
14 }
15 int main(void){
16 printf("In main");
17 multi (2,3);
18 sub(3,4);
19 return 0;
20 }

.

Figure 5.14: Skip_function_call.c: output

In Skip_function_call.c program, return address on stack is increased by 15
to skip function call sub(3, 4). After multi() function execution, control should
reach to sub() function for execution. sub() function execution is skipped by
changing return address.
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Figure 5.15: Skip_function_call.c: output with CFI check
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Chapter 6

Conclusion & Future Work

CFI is a simple and trustworthy mitigation technique against attempts to hijack pro-
gram’s execution path. We have implemented a CFI based technique that ensures
integrity of control-flow of a program using a regular expression and by checking the
integrity of return address stored on the stack. Overhead is always important pa-
rameter for any technique however our main objective had been to guarantee CFI.
Our work is useful for programs that are written in C & C++. Similar approach
can be easily extended to other programming environments.
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