
Security Analysis of Android Apps

Submitted in partial fulfillment of the requirements of the degree of

Master of Technology (M.Tech)

by

Prashant Maurya

Roll no. 163050074

Supervisor:

Prof. R.K. Shyamasundar

Department of Computer Science & Engineering

Indian Institute of Technology Bombay

2018

Abstract

The number of malware apps is increasing with increase in number of Android phone

users. These malware apps perform malicious activities such as exfiltrating private in-

formation. Though several works have been proposed to detect malware on Android but

none of them successfully point out the ”source” and ”sink” API calls due to which se-

curity is compromised. Our approach rightly abstracts the possible leaks and identifies

the points of leakage. Even though Android uses permission-based access control system,

it cannot enforce fine-grained control over data causing leakage. We developed a tool to

trace flow of data sensitive to a user. As there is no single entry point in an android

application, it makes it difficult to analyze the flow of information through static analysis.

We developed a hybrid approach for it that utilizes both dynamic and static analysis ap-

proaches. Our tool generates trace file for a running app containing sequence of sensitive

API calls. The API methods to be traced are given as input to our tool. We will use

DroidBot for automatic execution for apps which does not require login and collect log

using logcat. This trace data is utilized in analyzing app’s behavior. SOOT framework is

used to convert bytecode into intermediate representation called JIMPLE. The analysis

is done using RWFM model which is an information flow security model on JIMPLE. We

label variables between two API calls and track their label till the end and see if any

sensitive labeled variable is going out through any API method call.

i

Contents

Abstract i

List of Figures iv

1 Introduction 1

2 Background and Related work 4

3 SecFlowDroid: A tool for checking security threats 16

3.1 Dynamic analysis using APIMonitor . 17

3.2 Extracting JIMPLE using SOOT-Android 17

3.3 Labeling of source code using RWFM model 17

4 SecFlowDroid+ 19

4.1 Tracing API calls . 19

4.1.1 Getting APK and Sensitive API . 20

4.1.2 Unpacking and Disassembling . 22

4.1.3 Inserting Monitoring Code . 22

4.1.4 Assembling and Packing . 23

4.1.5 Signing the Hooked Application . 23

4.1.6 Exploration of Apps . 24

5 Example Scenario for SecFlowDroid+ 25

6 Experimental Analysis and Results 31

7 Conclusion and Future Work 36

ii

List of Figures CONTENTS

Acknowledgements 40

iii

List of Figures

2.1 The Android software stack . 6

2.2 Access to sensitive data available through protected APIs 8

2.3 Flowchart for automatic application execution in Dynal 11

2.4 Activity call graph and Function call graph 12

2.5 Dyanlog architecture . 13

3.1 Analysis of an app using SecFlowDroid . 18

4.1 Permission group mapping with API . 21

4.2 Block diagram for instrumenting APK . 23

5.1 Block diagram of SecFlowDroid+ . 27

5.2 HelloWorld API traces . 28

5.3 Static analysis result for HelloWorld app 30

6.1 Screenshot of an activity in Spy app . 32

6.2 API traces collected for Spy app . 32

6.3 Location sent to a Server in Spy app . 32

6.4 API call sequence for ListContact app . 33

6.5 Logs containing sequence of API calls for HelloWorld app 34

6.6 Static analysis result for HelloWorld app 34

iv

Chapter 1

Introduction

Smart phone usage is increasing significantly. We use it in our professional as well as

personal life. Thus it is a source for our private and confidential data. Users increasingly

rely on mobile applications for various objectives. Google Android is the most popular

mobile platform, hence the reliability of Android applications is becoming increasingly

important. Android is the largest installed base of any operating system. Android is

worthwhile target for attacks on users’ privacy-sensitive data. Possible ways of data

leakage are:

1. Certain apps are poorly programmed that leak data, and malicious apps exploit

such data intentionally.

2. Apps that are not malicious but contain advertisement libraries might leak data.

When people install a new Android app, it prompts for user’s permission before access-

ing personal information and certain hardware features. Ideally this information is for

functionality of the app. For example map app wouldn’t be useful if GPS data is not

accessible to it. After an app has permission to collect data, it can share users’ data with

anyone the app’s developer wants to, it might give users’ data to a third-party companies.

Android apps are reporting personal data to third-party tracking companies like Google

Analytics, the Facebook Graph API or Crashlytics [13]. Many tools and techniques exist

which detect malicious Android app up to certain extent. Most of the tools use either

static or dynamic analysis. There are some tools that combine both static and dynamic

analysis. Both static and dynamic analysis have their strengths and weaknesses. Dynamic

1

Chapter 1. Introduction

analysis gather more information than static analysis, therefore combining dynamic and

static analysis methods would provide better results. Although many existing works have

been proposed to detect malware but none of them successfully points out the API call

due to which security is compromised. Most of the works use either dynamic analysis or

static analysis or both to collect logs, extract features and further use machine learning

approach to classify benign and malicious apps. Our approach is unique as it uses both

dynamic and static analysis and further uses a RWFM security model to derive semantics.

In the following section we discuss the approaches used to detect malicious app which are

broadly divided into two:

• Static analysis, and

• Dynamic analysis

Static Analysis

Static analysis is a technique to detect malicious behavior by analyzing the code. This

technique does not require running of an app onto emulator or device hence it requires less

time and resource than dynamic analysis. This technique has small overhead, efficient and

scalable. However this technique has a major drawback of code obfuscation. The code

analyzed may not necessarily be the code that is actually run. Code obfuscation are

used for hiding malicious behavior by some developers. Some malwares even perform

transformation attacks that changes their code and behaviors during run-time.

Dynamic analysis

Dynamic analysis is aimed at detecting malicious behavior by executing the app on real

environment. Dynamic analysis focuses on the run time behaviors and the system metrics

of the application. However, dynamic analysis requires executions that will thoroughly

cover program behavior. Complementary to static analysis, dynamic analysis is immune

to code obfuscation and is able to see the malicious behavior on an actual execution path.

The success of dynamic analysis depends on the behavior coverage. It is often very difficult

very time consuming and less scalable.

2

Chapter 1. Introduction

Organization of Dissertation

This report is organized as follows: Chapter 2 gives an overview of Android OS, Android

architecture, how different component interact and contains summary of research in this

field. Chapter 3 describes SecFlowDroid, a tool for checking security threats. Chapter 4

describes SecFlowDroid+, modified version of SecFlowDroid. Chapter 5 describes example

scenario for SecFlowDroid+. Chapter 6 includes experimental analysis and results using

SecFlowDroid+. Chapter 7 gives conclusion and future work.

3

Chapter 2

Background and Related work

Backgroud

In this section we describe the overview of android OS. We first provide a high-level

overview of the Android architecture, Android application component and how these

components interact using Intents. Then we describe how Android uses permission-

based access control system for user’s private data and hardware access.

Android Architecture

Android operating system is a stack of software components based on Linux OS. It is

an open source and Linux-based Operating System. Figure 2.1 [7] shows the Android

software stack. Following are the major components of Android platform [7]:

Linux Kernel: This layer is core of android architecture offers service like memory man-

agement, power management, and security etc. When multiple Application runs

on the Android OS, the main security purpose of the Linux Kernel is to separate

applications resources from each other.

• Apps cannot have read permission to any other app’s data,

• Apps cannot use any other app’s memory space,

• Apps cannot use any other app’s CPU resources, and

• Apps cannot use services like telephony, GPS etc. without permission.

4

Chapter 2. Background and Related work

Hardware Abstraction Layer (HAL): HAL consists of libraries to provide interface

to hardware component such as bluetooth, camera etc. HAL exposes device hard-

ware to higher level API framework. When a framework API makes a call to access

device hardware, the Android system loads the library module for that hardware

component.

Android Runtime: Android runtime(ART) runs multiple virtual machines on low-memory

devices by executing DEX files. Each app run in its own instance of the ART.

Native C/C++ Libraries: Android posses its libraries which are written in C/C++

cannot be accessed directly. With the help of Java API framework, we can access

these native libraries through apps. There are numerous libraries like libraries for

audio and video formats etc.

Java API Framework: These API’s written in Java makes the entire feature-set of the

Android OS available to any developer.

Android App component

Android application can be seen as group of different component interacting with each

other. To use a component, application has to explicitly request to particular component

in intent filter under application’s manifest file.In android four kinds of component are

present.

Activity: It is one of the fundamental building blocks of an android app. An Activity

represents a single screen in an app. Activity is a visible process which is provided

on screen i.e. works in the foreground of the handset screen and allowing user to

interact with the UI.

Service: A Service is a component that performs operations in the background without a

user interface. They handle background processing associated with an application.

Broadcast Receiver: This component allows you to register for system or application

events. They handle communication between Android OS and applications.

5

Chapter 2. Background and Related work

Figure 2.1: The Android software stack

6

Chapter 2. Background and Related work

Content Provider: Content provider is useful when data is to be shared across appli-

cations.

Intent

When apps need to communicate with each other it uses message passing method in

Android. Intent is a message which contains the information regarding a recipient and

data. Intent provide both inter-application and intra-application communication. An

Intent is used to provide communication between components in several ways, there are

three fundamental use cases:

• Starting an activity: You can start a new instance of an Activity by passing an

Intent to startActivity(). The Intent describes the activity to start and carries

any necessary data.

• Starting a service: You can start a service with jobScheduler which will execute

this job on your application.

• Delivering a broadcast: A Broadcast Intent is an Intent sent to multiple appli-

cations at the same time.

Permission System

To access sensitive user data and certain system features, Android apps must request

permission. The purpose of permission is to protect the privacy of an android user. Every

android application has a manifest file which contains all the permission requirement

which that application need.

Requesting Permissions

Android system uses sandboxing technique where each app runs in a sandbox and need to

request for resources and data it requires outside the sandbox. Similar to Linux, android

OS isolates the apps using IDs. To access the resources and data which are not available

in sandbox needs to be declared in manifest file. Figure 2.2 [1] shows access to sensitive

data available through protected APIs. Depending on the sensitivity of the resource and

7

Chapter 2. Background and Related work

Figure 2.2: Access to sensitive data available through protected APIs

feature, the system might grant the permission automatically or might prompt the user

to approve the request [6]. Permissions are divided into several protection levels. The

protection level affects whether runtime permission requests are required. There are three

protection levels that affect third-party apps:

Normal Permissions: For apps that require data or resources outside the app’s sand-

box but these data posses a very little risk to user’s privacy. These permission are

also declared in manifest, though the system automatically grants normal permis-

sion. The system doesn’t prompt the user to grant normal permissions, and users

cannot revoke these permissions.

Signature Permissions: For apps that are signed by same developer, there are some

permission requested in manifest are granted automatically by the system at install

time.

Dangerous Permissions: For apps that require data or resources outside the app’s

sandbox and these data could potentially affect the user’s sensitive data then system

prompt the user to grant permission either at runtime or in case of older version at

install time.

8

Chapter 2. Background and Related work

Related work

DroidDolphin

DroidDolphin [18] is a dynamic Android malware detection framework using big data and

Machine Learning. DroidDolphin makes use of the technologies of GUI-based testing, big

data analysis, and machine learning to detect malicious Android applications. For better

results it uses both dynamic and static analysis. The DroidDolphin framework contains

four phases: Preprocessing, Emulation and Testing, Feature extraction, and Machine

Learning. For Preprocessing it uses APIMonitor, to monitor specific API calls that may

be called by malware. In emulation and testing phase it uses APE, for triggering GUI

events by identifying the buttons and filling forms on the touch screen. Logs are collected

for further analysis. Using the logged data from above phase, features are extracted in

the next phase using n-gram model to represent the features. In the last phase, SVM

machine learning algorithm to build a malware prediction model. The success of such a

dynamic analysis approach depends on two issues:

1. Whether we have collected sufficient, useful runtime logs, and

2. How well the machine learning techniques are applied.

Anti-emulation technique hide themselves from dynamic analysis with emulator. The

efficiency of dynamic analysis is not good. The code coverage is less. Time consumed is

more.

Dynaldroid

Dynaldroid [16] is a System for automated dynamic analysis of Android application. This

tool automatically does the dynamic analysis of an application by generating automated

test cases for execution of the app. This tool operate in three phases:

1. Preparation Phase: It uses Apktool [3] for disassembling the APK. It uses some

information extracted to generate a Robotium [9] based test case specific to the

application.

9

Chapter 2. Background and Related work

2. Execution Phase: Robotium is used for generating the events for different types

of UI elements(created in preparation phase). Systematic event triggering follows

DFS as shown is the following figure 2.3 [16].

3. Analysis Phase: Traces collected in above phase is used for analysis. Training

sets were observed to know the behavior corresponding to the malware samples.

Both system call traces and API traces were observed when the malicious action oc-

curred to deduce patterns which could help in identifying the occurrence of malicious

activity.

SmartDroid

SmartDroid [19] is an automatic system for revealing UI-based trigger conditions in An-

droid applications. SmartDroid automatically and efficiently detect UI based trigger con-

ditions required to expose sensitive behavior of android apps. Compared to other dynamic

analysis tools it takes less time in revealing the sensitive API calls. To reveal UI-based

trigger SmartDroid uses both static and dynamic analysis. Static analysis produces Activ-

ity switch path which would lead dynamic analysis in triggering the UI elements. During

static analysis Activity call graph (ACG) and Function call graph (FCG) shown in figure

2.4 [19] created to extract expected Activity switch paths. Then, use dynamic analysis to

traverse each UI element and explore the UI interaction paths towards the sensitive APIs.

Dynalog

Dynalog [2] is an automated dynamic analysis framework for characterizing Android appli-

cations. Dynalog framework enables automated dynamic analysis of android applications.

Dynalog framework is designed to accept large numbers of android apps, launch them se-

rially in an emulator and log several dynamic behaviors. Dynalog has several components

as shown in figure 2.5 [2]:

• Emulator-based analysis sandbox: The Dynalog framework utilizes DroidBox

tool that can be used to extract some hig h level behaviours and characteristics by

running the app on a device or emulator.

10

Chapter 2. Background and Related work

Figure 2.3: Flowchart for automatic application execution in Dynal

11

Chapter 2. Background and Related work

Figure 2.4: Activity call graph and Function call graph

• APK instrumentation module: APIMonitor is used to log API calls that are

commonly used by malware.

• Behavior/features logging and extraction: Dynalog implements capability to

extract specific log entries that correspond to monitored behaviors. The extracted

log entry is further dissected to get lower level features. These features are used for

classification of benign and malicious app.

• Application trigger/exerciser: DroidBox [14] includes Monkeyrunner [5] by de-

fault. The Monkey tool trigger a set of pseudo random events on the GUI.

• Log parsing and processing scripts: Some Machine learning classification method

is used to classify benign and malicious app.

Comparison of related work done

Comparison of above tools are done based on following attributes:

• Techniques: The techniques used to detect malicious app which is broadly divided

into two: Static analysis and Dynamic analysis.

12

Chapter 2. Background and Related work

Figure 2.5: Dyanlog architecture

• Test case generation: To run the application in structured manner for better

behavior coverage automated test cases are generated. Some tools generate test

cases before emulation and others may follow some strategy at run time only.

• Exploration strategy: Exploration strategy determines which UI element to tra-

verse next.

• Security Analysis: What method is used to classify benign app from malicious

one.

DroidDolphin DynalDroid SmartDroid Dynalog

Techniques Dynamic and Static Dynamic Static and Dynamic Dynamic

Test case generation AT runtime Uses Robotium ACG and FCG No

Exploration strategy Modified Monkey Strategic DFS Random(Monkey)

Security Analysis ML ML No ML

Output Secure? Secure? Logs Secure?

Scalability Moderate Moderate High Low

Table 2.1: Comparison of related work done

Tools Used for Automated exploration of App

AndroidViewClient

AndroiViewClient [4] is an extension to monkeyuner. It used for automatic exploration of

any android application. It generates re-usable scripts which could be used to run the app

again following the exact same path. Following are some key features of AndroiViewClient:

13

Chapter 2. Background and Related work

• Fills forms and provides different kind of inputs based on UI element selected

• Create python file to simulate same UI interactions

• Slower UI interactions

• Control goes out of the app

• No app instrumentation

• Gets stuck on some apps

• Works with latest API versions

DroidBot

DroidBot [11] is a lightweight UI-guided test input generator, which explores an Android

app. DroidBot works on almost any device and does not require instrumentation. Fol-

lowing are some key features of DroidBot:

1. Good code coverage quickly

2. Does not fill text fields

3. No app instrumentation

4. Works with latest API versions and devices

5. Keeps control within app / Returns control back to app in case of irrelevant explo-

ration

6. produce UI structures and method traces for analysis

7. Runs app in continuous mode

DroidMate

DroidMate [10] is automated exploration tool for android app. It has powerful test gen-

erator which generates test by exploring the app at runtime. DroidMate first installs the

14

Chapter 2. Background and Related work

app and launches its main activiMy. Further it operates in a loop, exploration strategy

takes last exploration action as input which contains information on the displayed GUI

views and called API methods. Using this information it decides which next exploration

action to conduct. Exploration action can be any of click, long-click, press home, press

back, reset, terminate. Following are some key features of DroidMate:

• Works on emulators with API 19 and API 23

• App instrumentation required

• Good code coverage

• Runs app in multiple sessions

• Does not work on some apps

Monkey

Monkey [8] is a program that runs on a device or emulator for execution of app by

generating pseudo-random streams of user events such as touches, clicks etc. as well as a

number of system-level events. Monkey is generally used for stress-testing of an app.

Comparisons

Tool Fills form App Instrumentation Strategy Supported Android versions Code Coverage

AndroidViewClient Yes No Random View and Random Event All versions Medium

DroidBot No No Model All versions Good

DroidMate No Yes Model Api 19 and 23 Good

Monkey No No Random All versions Less

Table 2.2: Comparison of tools used for automated exploration of app

15

Chapter 3

SecFlowDroid: A tool for checking

security threats

SecFlowDroid [1] follows a hybrid approach and utilizes information from both, the traces

generated using APIMonitor and source code(APK). It uses this information to detect

possible leaks and also have ability to detect where exact leakage is happening. SecFlow-

Droid not only finds out possible leak but also tracks the point where it is leaking by using

taint analysis and information flow First it dynamically executes the given application in

APIMonitor which generates a sequence of protected APIs that are invoked during the

manual exploration of the app. Logs are collected which are to be used for static analy-

sis. Then, it extracts JIMPLE code of those methods which has invoked protected APIs

using SOOT-Android tool. IT analyzes these JIMPLE files and tracks information flow,

including implicit flows, between API invocation using RWFM model and report misuse

if found. SecFlowDroid consists of following steps:

1. Dynamic analysis using APIMonitor.

2. Extracting JIMPLE using SOOT-infoflow-Android.

3. Labeling of Source code using RWFM model.

16

Chapter 3. SecFlowDroid: A tool for checking security threats

3.1 Dynamic analysis using APIMonitor

APIMonitor has configuration file which has all the protected API calls that have to logged

to monitor specific API calls that may be called by malware. APIMonitor repackage the

apk with monitored codes by extracting the APK file into smali format, insert the monitor

code, sign the APK with its own signature. With the repackaged APK, we would be able

to trace the calls to these API calls in this application during the runtime, through logcat.

Let API calls be X1, X2, ..., Xn, where each Xi is in the form of {ApplicationClassName,

ApplicationFunctionName, APIClassName, APIFunctionName}. Logs are collected based

on manual interaction with the application on the emulator/device.

3.2 Extracting JIMPLE using SOOT-Android

From logs collected in previous phase we have class name and function name of invoked

API calls in app. Now we only need to analyze this part of the source code. We need

to convert the APK into JIMPLE format using soot-infoflow-android framework only for

these classes. This JIMPLE code is analyzed to check the data flow between every consec-

utive API (X i , X j) calls using RWFM model and report if any sensitive data is leaked.as

shown in the figure 5.1. For example, suppose X1 is getLocation() API call(source) and

X2 is global output API call such sentMessage()(sink). In JIMPLE code, it is written as:

a = getLocation();

b = a;

c = sentMessage(b);

In order to find out whether b contains sensitive information or not, Information flow

model comes into picture, it tells the sensitivity of the variable b irrespective the com-

plexity of the JIMPLE code.

3.3 Labeling of source code using RWFM model

JIMPLE statements are labeled according to RWFM rule. Read the JIMPLE class files

according to the API calls given in trace file. For each API calls in trace file, do following:

17

Chapter 3. SecFlowDroid: A tool for checking security threats

Figure 3.1: Analysis of an app using SecFlowDroid

• Label the variables from starting of the file to API call according to RWFM imple-

mentation.

• Label the variable calling or participating with API call as private.

• Trace the data flow from source to sink and report if any misuse happen according

RWFM rules.

APIMonitor tool has been deprecated and does not work with play store apps now.

So i needed some other alternative to trace sensitive API calls with the class and

function name it was called in. There are tools available which traces API calls but

does not log their class and function name. This log file will be input to the SOOT

framework. In the next chapter we have described how the API calls are being traced.

18

Chapter 4

SecFlowDroid+

In this chapter we will see how the API calls are traced. For tracing API call we have

developed an API tracing tool for Android based mobile device. The Android middleware

provides abstractions for conveniently using device functions like sending SMS messages

directly from applications written in Java using API calls without having to directly

interact with native code libraries on the system level. Logging the sequence of these API

calls helps us in tracking sensitive data. Our tool gives sequence of API calls with their

class name and function name it was called in. For apps which do not require login can

be explored using DroidBot. SecFlowDroid+ consists of following steps:

1. Tracing API calls

2. Extracting JIMPLE using SOOT-Android

3. Labeling of Source code using RWFM model

The last two steps are same as SecFlowDroid described in previous chapter.

4.1 Tracing API calls

Our tool uses program instrumentation mechanism for monitoring certain API calls at

runtime. Our tool repackage the APK with monitored codes by extracting the APK file

into smali format, insert the monitor code, sign the APK with its own signature. With the

repackaged APK, we would be able to trace the calls to these API calls in this application

19

Chapter 4. SecFlowDroid+

during the runtime, through logcat command. Logs are collected based on automated

interaction with the application on the emulator using DroidBot. Instrumentation involves

following steps:

4.1.1 Getting APK and Sensitive API

APK

Google Play supports multiple APK feature which allows developer to upload multiple

APKs for his app to target devices with different device configuration. Google Play filters

from these APKs to decide which device receive which APK. Thus we need same device

to download the APK and test it for better results. For my project I have used Samsung

S6 to download APK and to test it. To download I follow these steps:

$ adb shell pm list packages //list all packages on device

$ adb shell pm path <package name> //returns path of given package name

$ adb pull <path> //pull APK from device

Sensitive API

Permissions are organized into groups and each permission allows several permissions

shown in figure 4.1 to be defined in app manifest file. For example the Phone group

includes following:

1. READ PHONE STATE

2. READ PHONE NUMBERS

3. CALL PHONE

4. ANSWER PHONE CALLS

5. READ CALL LOG

6. WRITE CALL LOG

7. ADD VOICEMAIL

20

Chapter 4. SecFlowDroid+

Figure 4.1: Permission group mapping with API

8. USE SIP

9. PROCESS OUTGOING CALLS

The permission groups are defined in this way so that users can understand which

permission access what data. Following permission groups are defined in Android:

1. Calender

2. Camera

3. Phone

4. SMS

5. Location

6. Contacts

7. Microphone

8. Storage

9. Sensors

21

Chapter 4. SecFlowDroid+

Google Android does not give the mapping of permissions to API calls i.e. what are the

API calls allowed on getting certain permission. There are three major studies which has

attempted to recover this information SuSi [17], PScout [15] and axplorer [12]. I have

used Pscout result for getting sensitive APIs.

4.1.2 Unpacking and Disassembling

APK is an archive that contains all the necessary files for successful installation and

functioning of an app. The source code present in APK are in dex file format which is

completely unreadable. We have used Apktool [12] for unpacking the application and

disassembling its Dalvik byte code. Apktool uses baksmali to disassemble the class.dex

files into smali. We have described how to insert the monitoring code in the next section.

4.1.3 Inserting Monitoring Code

Modifying and inserting the smali files is a challenging task. For a given list of sensitive

API(default-list) to log, our tool creates a class file (Pro.smali) in smali which contains

as many functions as there are API in the default-list. Every API in the default-list has a

corresponding function in the Pro.smali file. Every functions in Pro.smali has same role of

logging class name, function name and the API called with a TAG to facilitate logging

only these things. While instrumenting the app for each smali file in the app we check

whether any API in default-list is called. If we find one we call the corresponding function

in Pro.smali. This function call will log the class name and the function name the API

was called in. I have written code in python to automate the editing of smali files and a

bash script to do complete instrumentation of app. Following code is inserted into smali

file:

invoke-static {{}}, {package_name}/Pro;->{method_name}()V

Here package name and method name is replaced by corresponding package name of the

APK and method name. This statement calls the corresponding function in Pro.smali

class.

22

Chapter 4. SecFlowDroid+

Figure 4.2: Block diagram for instrumenting APK

4.1.4 Assembling and Packing

Assembling Dalvik byte code and packing the hooked application is done using Apktool.

After this step we will have the instrumented APK. We still need to sign this APK before

we can run it on an Android device or emulator.

4.1.5 Signing the Hooked Application

An APK must be signed before installation with a certificate. When any user signs the

app, the certificate facilitates in further updates of application. The main purpose of

certifying an app is to distinguish the developers. Alos, these certifications allow the

system to grant or deny access to signature permissions. We have used standard keytool

for creating signature and jarsigner for signing any APK.

23

Chapter 4. SecFlowDroid+

4.1.6 Exploration of Apps

Given an APK and list of API methods to log, this mechanism creates an instrumented

APK. Running this APK on an actual device/emulator will log sequence of API calls

triggered by this app at runtime. For apps which do not require login can be explored

automatically using DroidBot. For apps which require login can be explored manually.

Manual interaction also lets you cover app’s behavior which has more probability of data

leakage.

24

Chapter 5

Example Scenario for

SecFlowDroid+

In this section we will test the tool for a toy app(HelloWorld.apk). We built this app

for testing of the SecFlowDroid+. HelloWorld app has two classes to implement two

functionality. First one is MyActivity.class, it takes the phone’s location and sends a sms

to a mobile number. Second one is MyReceiver.class, it sends any number you dial on

your smart phone to a mobile number. This app requires following permissions to perform

above functionality.

1. Location

2. Phone

3. Message

Unpacking and Disassembling We will use Apktool to unpack APK and disassemble

it.

$ apktool d -r HelloWolrd.apk

Now we have smali files for the corresponding classes in HelloWorld.apk

Inserting Monitoring Code We want to log sequence of API calls only. So we will

search of sensitive API calls only and insert the monitoring code to log class name,

function name and the API being called.

25

Chapter 5. Example Scenario for SecFlowDroid+

$ python createPro.py

$ python insertMonitoringCode.py

Assembling and Packing Following command will assemble Dalvik byte code and pack-

age the hooked app to create its instrumented APK.

$ apktool b HelloWolrd

Signing the Hooked Application: To run this app on an emulator or device I need

to sign this app. I use my own signature to sign this app which I created using

keytool.

$ jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1 -keystore

my-releasekey.keystore HelloWorld/dist/HelloWorld.apk sec_analysis

Exploration of App We install this app on a device and test it. We covered both the

functionality of the app.

$ adb install -g HelloWorld/dist/HellowWorld.apk

$ adb logcat -c

$ adb logcat -s Prashant

Following logs were collected.

Static Analysis: We give the apk, ”source” and ”sink” file as input and obtain following

result after doing the static analysis.

SecFlowDroid+ starts from the first function in the log and searches for the sensitive

api in that function. It labels all the variable whether it is sensitive. With reference

to the following log, variable $r6 is sensitive as it contains sensitive data which is

accessed by a api call which was listed in ”source” api. See the label given to it is

owner=[com.example.android. helloworld], readers=[public, com.example.android.

helloworld], writers=[com.example.android. helloworld] where as label given to

non sensitive api is owner=[com.example.android. helloworld], readers=[public,

26

Chapter 5. Example Scenario for SecFlowDroid+

Figure 5.1: Block diagram of SecFlowDroid+

27

Chapter 5. Example Scenario for SecFlowDroid+

Figure 5.2: HelloWorld API traces

com.example.android. helloworld], writers=[com.example.android. helloworld]. In-

side the MainActivity method, sendSMS method invoked whose second parameter

is sensitive. So, variable $r2 in sendSMS is given private label. Now this $r2 variable

is going out via a sensitive api which is listed in ”sink”, thus this transaction has

been declared as suspicious.

**

Lcom/example/android/helloworld/MainActivity;.onCreate.Landroid/location/

LocationManager;

stmt $r0 := @this: com.example.android.helloworld.MainActivity

{owner=[com.example.android.helloworld], readers=[public, com.example.android.

helloworld], writers=[com.example.android.

helloworld]}

..................

stmt $r6 = virtualinvoke $r5.<android.location.LocationManager: android.

location.Location.getLastKnownLocation

(java.lang.String)>("network")

Sensitive api :android.location.LocationManager getLastKnownLocation

{owner=[com.example.android.helloworld], readers=[com.example.android.

helloworld], writers=[public, com.example.android.helloworld]}

stmt virtualinvoke $r0.<com.example.android.helloworld.MainActivity: void

onLocationChanged(android.location.Location)>($r6)

.............

28

Chapter 5. Example Scenario for SecFlowDroid+

stmt virtualinvoke $r0.<com.example.android.helloworld.MainActivity: void

sendSMS(java.lang.String,java.lang.String)>("7408080673", $r4)

^^^

com.example.android.helloworld.MainActivity.sendSMS

^^

stmt $r0 := @this: com.example.android.helloworld.MainActivity

{owner=[com.example.android.helloworld], readers=[public, com.example.

android.helloworld], writers=[com.example.android.helloworld]}

stmt $r1 := @parameter0: java.lang.String

{owner=[com.example.android.helloworld], readers=[com.example.

android.helloworld], writers=[public, com.example.android.helloworld]}

....................

stmt virtualinvoke $r3.<android.telephony.SmsManager: void sendTextMessage

(java.lang.String,java.lang.String,java.lang.String,android.app.

PendingIntent,android.app.PendingIntent)>($r1, null, $r2, null, null)

!!!!!!!!!!!!!!!!! Suspicious !!!!!!!!!!!!!

subLabel {owner=[com.example.android.helloworld], readers=[com.example.

android.helloworld], writers=[public, com.example.android.helloworld]} tries

to write {owner=[com.example.android

.helloworld], readers=[public, com.example.android.helloworld],

writers=[com.example.android.helloworld]}

!!!!!!!!!!!!!!!!! Suspicious !!!!!!!!!!!!!

Following figure 6.6 shows the two suspicious transactions which sends a sensitive

data outside through a ”sink” API.

29

Chapter 5. Example Scenario for SecFlowDroid+

Figure 5.3: Static analysis result for HelloWorld app

30

Chapter 6

Experimental Analysis and Results

In this chapter we have illustrated three experiments to show some cases of data leakage.

We have successfully found source and sink APIs for these apps.

Experiment 1: Spy

Spy app is an illustration of how a malicious app really works. This app asks user to fill a

form which has three entries as shown in figure 6.1. It has a send button. On clicking the

send button user expects that the details filled in the form will go to a server. But what

happens in this app is it sends your location data to a server on clicking the send button.

First I instrument the Spy.apk using sensitive API list which has all sensitive APIs in-

cluding the ones which fetch location data and sends data to a server. After instrumenting

the app I need to sign it using my own signature. Now I can run this app on an emulator

or a device. On running the app I get the log in figure 6.2.

On clicking the send button it sends the location to a server shown in figure 6.3.

On doing static analysis on the logs collected for Spy app we found the data leakage.

Static analysis shows following result which proves that location data is going out to some

server.

sensitive api stmt $r9 = virtualinvoke $r8.¡android.location.LocationManager: android.location.Location

getLastKnownLocation(java.lang.String)-(”network”)

31

Chapter 6. Experimental Analysis and Results

Figure 6.1: Screenshot of an activity in Spy app

Figure 6.2: API traces collected for Spy app

Figure 6.3: Location sent to a Server in Spy app

32

Chapter 6. Experimental Analysis and Results

global output api stmt interfaceinvoke $r2.¡org.apache.http.client.HttpClient: org.apache

.http.HttpResponse execute(org.apache.http.client.methods. HttpUriRequest)-($r3)

Experiment 2: ListContact

Created an app ListContact which has an activity with a button pressing which calls a

callback function which read the user’s Contact list by querying and send it via SMS to

a phone number. Snapshot of the logs collected for this app is shown in the fig6.4. On

Figure 6.4: API call sequence for ListContact app

doing static analysis on the logs collected for ListContacts app we found the data leakage.

Static analysis shows following result which proves that contacts data is going out via

SMS on 7408080673.

sensitive api stmt $r5 = interfaceinvoke $r9.¡android.database.Cursor: java.lang.String

getString(int)-($i0)

global output api stmt virtualinvoke $r2.¡android.telephony.SmsManager: void sendTextMes-

sage(java.lang.String,java.lang.String,java.lang.String,android.app. PendingIntent,android.

33

Chapter 6. Experimental Analysis and Results

app.PendingIntent)-(”7408080673”, null, $r1, null, null)

Experiment 3: HelloWorld

We built this app HelloWorld which has two classes to implement two functionality. First

one is MyActivity.class, it takes the phone’s location and sends a sms to a mobile number.

Second one is MyReceiver.class, it sends any number you dial on your smart phone to a

mobile number. We run this app after instrumenting it. Following logs shown in figure

6.5 were collected .

Figure 6.5: Logs containing sequence of API calls for HelloWorld app

On doing static analysis on the logs collected for HelloWorld app we found the data

leakage. Following are the two suspicious transactions which sends a sensitive data outside

through a sink api.

Figure 6.6: Static analysis result for HelloWorld app

34

Chapter 6. Experimental Analysis and Results

Results

The results shown in the table are for above apps. Also tried our tool on some Play Store

apps but did not get any suspicious transactions.

Android App Source Sink

Spy Location Internet

ListContacts Contacts SMS

HelloWorld Location, Dialed Phone Numbers SMS

Table 6.1: Data leakage of apps with source and sink

35

Chapter 7

Conclusion and Future Work

Given a list of sensitive APIs, we are able to instrument the APK of an app so that we can

collect sequence of sensitive API calls while the app is running. For apps which do not

require login can be explored automatically using DroidBot. The logs we have collected

contain the class name and the function name in which those APIs were called. Given

this log file we are able to analyze the APK to find suspicious transactions in the log. We

classify a transaction is suspicious when a data returned from an API in the source list

is going out through an API in the sink list. Our tool identifies pairs of such source and

sink API calls, which we can say are suspicious transactions. Though, at this point we

cannot say that the transaction between these source and sink pairs are malicious but we

can inspect manually and examine the result to find out whether these transactions are

app’s functionality or is actually malicious.

In our current implementation we do not log what data is accessed and sent out by a

sensitive API call. If we are able to get the data as well, then we would also know exactly

what data is going out of the system. This will further help us in analyzing if a suspicious

transaction is a data leakage or not (since we know exactly what data is going out) by

comparing it against the app’s actual functionality.

For Playstore apps we are able to collect logs for sensitive APIs after instrumentation but

still not able to do static analysis for all apps.

36

Bibliography

[1] Asif Ali and R.K. Shyamasundar. 2017. SecFlowDroid: A Tool for Privacy Analysis

of Android Apps using RWFM Model. MTech. Thesis.

[2] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer. 2016. Dynalog: an automated dynamic

analysis framework for characterizing android applications. In 2016 International Con-

ference On Cyber Security And Protection Of Digital Services (Cyber Security). pages

1–8.

[3] Connor Tumbleson. 2016. Apktool. https://github.com/iBotPeaches/Apktool.

[Online; accessed April 10, 2018].

[4] Diego Torres Milano. 2017. AndroidViewClient. https://github.com/dtmilano/

AndroidViewClient. [Online; accessed June 10, 2018].

[5] Google Android. 2012. Monkeyrunner. https://developer.android.com/studio/

test/monkeyrunner/. [Online; accessed April 10, 2018].

[6] Google Android. 2018. Permission overview. https://developer.android.com/

guide/topics/permissions/overview. [Online; accessed June 10, 2018].

[7] Google Android. 2018. The Android software stack. https://developer.android.

com/guide/platform/. [Online; accessed June 10, 2018].

[8] Google Android. 2018. UI/Application Exerciser Monkey. https://developer.

android.com/studio/test/monkey. [Online; accessed June 10, 2018].

[9] Hrushikesh Zadgaonkar. 2011. Robotium. https://github.com/RobotiumTech/

robotium. [Online; accessed April 10, 2018].

37

https://github.com/iBotPeaches/Apktool
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium

Bibliography

[10] K. Jamrozik and A. Zeller. 2016. DroidMate: A Robust and Extensible Test Gen-

erator for Android. In 2016 IEEE/ACM International Conference on Mobile Software

Engineering and Systems (MOBILESoft). pages 293–294.

[11] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a

lightweight UI-Guided test input generator for android. In 2017 IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C). pages 23–26.

[12] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien

Octeau, Sebastian Weisgerber. 2016. On Demystifying the Android Appli-

cation Framework: Re-Visiting Android Permission Specification Analysis.

https://github.com/reddr/axplorer. [Online; accessed May 15, 2018].

[13] Narseo Vallina Rodriguez, Srikanth Sundaresan. 2017. 7 in 10 smartphone

apps share your data with third-party services. https://theconversation.com/

7-in-10-smartphone-apps-share-your-data-with-third-party-services-72404.

[Online; accessed June 15, 2018].

[14] Patrik Lantz. 2012. DroidBox. https://github.com/pjlantz/droidbox. [Online;

accessed April 10, 2018].

[15] PScout. 2015. Android Permission Mappings. https://github.com/zyrikby/

PScout/blob/master/results/API_22/publishedapimapping. [Online; accessed

June 10, 2018].

[16] K. P. Reddy, Babu Rajesh V, H. Pareek, and M. U. Patil. 2015. Dynaldroid: A system

for automated dynamic analysis of Android applications. In 2015 National Conference

on Recent Advances in Electronics Computer Engineering (RAECE). pages 124–129.

[17] Steven Arzt, Siegfried Rasthofer and Eric Bodden. 2013. SuSi: A Tool for the

Fully Automated Classification and Categorization of Android Sources and Sinks.

https://github.com/secure-software-engineering/SuSi. [Online; accessed May 15, 2018].

[18] Wen-Chieh Wu and Shih-Hao Hung. 2014. DroidDolphin: A Dynamic Android Mal-

ware Detection Framework Using Big Data and Machine Learning. In Proceedings of the

38

https://theconversation.com/7-in-10-smartphone-apps-share-your-data-with-third-party-services-72404
https://theconversation.com/7-in-10-smartphone-apps-share-your-data-with-third-party-services-72404
https://github.com/pjlantz/droidbox
https://github.com/zyrikby/PScout/blob/master/results/API_22/publishedapimapping
https://github.com/zyrikby/PScout/blob/master/results/API_22/publishedapimapping

Bibliography

2014 Conference on Research in Adaptive and Convergent Systems . ACM, New York,

NY, USA, RACS ’14, pages 247–252.

[19] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and

Wei Zou. 2012. SmartDroid: An Automatic System for Revealing UI-based Trigger

Conditions in Android Applications. In Proceedings of the Second ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices . ACM, New York, NY, USA,

SPSM ’12, pages 93–104.

39

Acknowledgements

I am thankful to my supervisor Prof. R.K. Shyamasundar for his enormous support

and insightful suggestions throughout my project. His insightful suggestions to the various

problems that I faced during my project, were not only useful, but also helped me in

broadening my basic understanding of project area.

Signature:

Prashant Maurya

163050074

Date: June 2018

40

	Abstract
	List of Figures
	1 Introduction
	2 Background and Related work
	3 SecFlowDroid: A tool for checking security threats
	3.1 Dynamic analysis using APIMonitor
	3.2 Extracting JIMPLE using SOOT-Android
	3.3 Labeling of source code using RWFM model

	4 SecFlowDroid+
	4.1 Tracing API calls
	4.1.1 Getting APK and Sensitive API
	4.1.2 Unpacking and Disassembling
	4.1.3 Inserting Monitoring Code
	4.1.4 Assembling and Packing
	4.1.5 Signing the Hooked Application
	4.1.6 Exploration of Apps

	5 Example Scenario for SecFlowDroid+
	6 Experimental Analysis and Results
	7 Conclusion and Future Work
	Acknowledgements

