
Constraints on Permission for
Making Safe App Execution

Submitted in partial fulfillment of the requirements of the degree of

Master of Technology (M.Tech)

by

Dharmendra Kumar

Roll no. 163050032

Supervisor:

Prof. R.K. Shyamasundar

Department of Computer Science & Engineering

Indian Institute of Technology Bombay

2018

Abstract

In recent past smart-phones have become very popular due to their utility in obtain-

ing online services and increasing level of user convenience. The cost of smart-phones

is falling and increasing number of laymen are using such devices installed with utility

applications. Android operating system runs on nearly 82% of these smart-phones avail-

able today. As in the case of desktop operating systems, mobile operating systems too

are prone to viruses and malware and there is a steep increase in malicious Apps on

Android’s application store from where the users install their applications. There exists

techniques and methods that are developed to check whether an application is benign or

malicious. Applications are checked before they are uploaded to the applications store.

The statistics shows that the existing approaches are falling short. Most of the works

classify applications into categories based on certain models. Accuracy of these models

has direct impact on the security of the user data these applications have access to on

a smart-phone. Sometimes malicious applications are also classified as benign. In such

cases, there can be serious security breaches as the application makes its way to users’

smart-phones via application store. The main idea of our approach is to restrict the ma-

licious behaviour of applications to provide the security to user’s private data and device

itself. We have done dynamic and static analysis of applications to know the behaviour

of applications. We have build classification models using various machine learning tech-

niques to classify the applications as benign or malicious. If applications are classified as

malicious, we have restricted its malicious behaviour without modifying apk file. We have

used wrappper around the applications such that applications work normally even after

restrictions.

iii

Contents

Dissertation Approval i

Declaration of Authorship ii

Abstract iii

List of Figures vii

1 Introduction 1

2 Background & Related Work 4

3 Android: Architecture, Permissions, APIs 6

3.1 Architecture . 6

3.1.1 Linux Kernel . 7

3.1.2 Native Libraries . 7

3.1.3 Android Runtime . 8

3.1.4 Android Framework . 8

3.1.5 Applications . 8

3.2 Permissions . 8

3.2.1 Normal Permissions . 9

3.2.2 Signature Permissions . 10

3.2.3 Dangerous Permissions . 12

3.3 Application Program Interfaces (APIs) . 13

iv

List of Figures CONTENTS

4 Method of App Analysis 14

4.1 Design Approach . 14

4.2 Analysis of Application . 16

4.2.1 Budget Planner . 16

4.2.2 BHIM Making India Cashless . 21

4.2.3 Funnyys . 22

4.2.4 Omingo . 24

4.2.5 System Certificate . 25

4.2.6 Tez – A new payments app by Google 26

4.2.7 MMS Beline . 28

4.2.8 Google Calendar . 30

4.2.9 Laughtter . 35

4.2.10 Android Framework . 36

5 App Classification Models 39

5.1 Logistic Regression . 41

5.2 Support Vector Machine . 42

5.3 Neural Network . 43

5.4 Random Forest . 44

5.5 Comparison . 45

6 Restricting Malicious Intent of Application 46

6.1 Wrapping Applicaitons . 48

6.2 Implementation . 50

6.3 Case Study . 51

7 Conclusion and Future Work 55

Acknowledgements 59

v

List of Figures

3.1 The Android Software Stack . 7

4.1 Workflow of analysis phase . 15

4.2 Workflow of classification phase . 15

4.3 Workflow of restirction phase . 16

4.4 Screenshot captured during static analysis of Budget Planner app 17

4.5 Screenshot captured during analysis . 18

4.6 API count vs Exploration time . 19

4.7 API count vs Exploration time . 20

4.8 Screenshot captured during analysis of BHIM app 21

4.9 Screenshot captured during analysis of Funnyys app 23

4.10 Screenshot captured during analysis of Omingo app 24

4.11 Screenshot captured during analysis of System Certificate app 26

4.12 Screenshot captured during analysis of Tez app 27

4.13 Screenshot captured during analysis of MMS Beline app 29

4.14 Screenshot captured during analysis . 30

4.15 API count vs Exploration time . 34

4.16 API count vs Exploration time . 34

4.17 Screenshot captured during analysis of Laughtter app 36

4.18 Screenshot captured during analysis of Android Framework app 37

5.1 Workflow of building a classification model. 39

5.2 Workflow of classifying the new observations. 40

6.1 Problems in Android current security scheme 47

vi

vii

6.2 App working properly after restrictions . 49

6.3 Interaction between apps, application framework, and Linux kernel on An-

droid . 50

6.4 Interaction between apps, application framework, and Linux kernel on An-

droid . 51

6.5 App working properly after restrictions . 54

vii

Chapter 1

Introduction

Android mobile devices is becoming very popular due to ease of use and its user-friendliness

User Interface (UI). There is monopoly of Android in mobile device market. Nearly 82%

of smartphones run Android Operating System [15] . Due to such a large market share,

malware authors are targeting Android mobile devices. The Android is the fastest growing

mobile operating system. Unlike Apple’s App Store, deploying an application in Google

Play Store is much easier. Google takes minimal steps for inspection of applications

this allows anyone to publish applications on the Android market. If an application is

reported as malware by users, it will then be removed. Due to large market share and easy

deployment policy, malware authors are targetting Android. Malware authors are creating

malicious application to compromise Android security. According to AO Kaspersky Lab,

following Android security issues were in trend in 2016:

• Third party applications using super user permissions.

• Development of new mechanism to pass security system.

• Ransomware i.e encrypting mobile devices.

• Continuous improvement in Mobile Banking Trojans.

• Deploying malicious application in Google Play Store.

In 2016, Kaspesky Lab detected the following:

• 8,534,221 malicious installation packages

Chapter 1. Introduction 2

• 136,786 mobile banking Trojans

• 251,114 mobile ransomware Trojans

Malicious applications frequently easily passes the security suite of Google’s Play Pro-

tect security suite, and some applications attracts millions of downloads before Google

can find and remove them. Recently the security firm Check Point discovered a new type

of Android malware called “Expensive Wall” hidden in 50 apps in the Play Store. They

have been cumulatively downloaded nearly 4.2 million times. Even after Google removed

all these applications, Check Point discovered new sample of the malware in the Google

Play store. So, we can not only rely on Google Play Protected security suite.

Antivirus software is designed to detect, prevent and take action against malicious

software. It can either disarm or remove the malicious software. Antivirus scans the

file comparing specific pattern in the code against the signature of viruses which already

stored in database. If pattern matches, then it is considered as malicious. If a new type

of malicious application will come, then it will not be identified by the current antivirus.

In that case, from security perspective, application may access user’s private data and

perform security-sensitive operations on the device.

In the current scenario, Android security revolves around the permissions. Applica-

tions ask for all the permission that it needs. If required permission is not given to the

application, applications does not work properly. Since, applications need all the permis-

sion to work we can not restrict particular feature of applications that is causing malicious

activity.

For providing the security to user’s private data and device, our approach is to restrict

the behaviour change of Android application and also to restrict them from doing any

malicious activity. To achieve our goal we are doing the following things:

• We are doing the static and dynamic analysis of the application to gather infor-

mation about permissions and Application Program Interfaces (APIs). Based on

2

Chapter 1. Introduction 3

permissions and APIs, we are trying to figure out what can be the possible be-

haviour of application.

• We are building App Classification Model to check whether application is benign or

malicious.

• We try to restrict the malicious behaviour of application by wrapping the applica-

tion.

Organisation: In the following chapter, that is Chapter 2, we provide background and

related work. In Chapter 3, we provide details about the Android software stack archi-

tecture and describe only the components of the stack that are relevant to our work. In

Chapter 4, we present our approach and also provide analysis of some prominent applica-

tions on application store of Android. In Chapter 5, we present our classification models

that help us determine/classify whether an app is benign or malicious. In Chapter 6, we

show how to restrict malicious intent of an application and also talks about case studies

of various applications and we conclude with possible future work in Chapter 8.

3

Chapter 2

Background & Related Work

Android operating system has five layer in its software stack. There are multiple applica-

tions running on the top of operating system. To provide the security to one application

from other applications and to Android operating system from applications Android uses

uses virtual machines. Every Android application runs in its own process, with its own

instance of the Dalvik virtual machine (DVM) [18] / Android Runtime (ART) [5]. Since,

all Android applications run in its own virtural machine, they can not affect the execution

of each other and also they can affect Android operating system functionality.

To check the behaviour of Android applications various technique and tools have been

developed. Androwarn is a tool to analyze the applications [4]. Androwarn does the

static analysis of the application’s Dalvik bytecode, represented as Smali and provides

the detail about possible malicious behaviour of applications. Flowdroid uses call graphs

of the application to analyze the behaviour of the application [1]. Static analysis of

application can be done on the basis of permissions it requires [11]. Another way of static

anaysis is to check the behaviour of kernel to provide the behaviour of applications [9].

Droidmate [10] does the dynamic analysis of application by clicking on various UI

element and traces the API calls made. Crowdroid [2] detects the malicious behaviour

by analyzing data collected from two sets: one from those from articial malware created

for test purposes, and those from real malware found in the wild. To detect malware

in Android applications various methods and techniques have developed. Some of those

approaches are:

Chapter 2. Related Work & Background 5

Permission based approach

To stop malware installation permission based system has been developed. While instal-

lation applications ask for permission to access sensitive resources. Based on requested

permission a classifier has been developed to identify benign and malicious application.

Two-layered permission based approach

In this method, they analyzed data from two types of permissions namely requested permis-

sions and used permissions. After analyzing requested permissions, they make classifier to

classify applications int benign and malware. After this classification, they make another

classifier by analyzing used permissions to identify malware.

Malware detection using static feature-based analysis

This approach uses various static information such as permissions, deployment of com-

ponents, intent message passing and API calls for characterizing the Android application

behaviour. After extracting the above information one can

1. applies K-means algorithm to classify applications into benign and malware.

2. can generate a model using KNN classifier for detecting malware.

Malware detection using hybrid of static and dynamic analysis

By static analysis, it extracts expected activity switch paths by analyzing both Activity

and Function Call Graphs. Then it uses dynamic analysis to traverse each UI elements

and explore the UI interactions paths towards sensitive APIs. Using these data, they

create a model to detect malware.

Behaviour-based malware detection system

They firstly gather test data and actual processed data, it processes the data and try to

figure out some patterns in the data that can be used to differentiate benign applications

and malicious applications. They use different machine learning techniques to find the

pattern in the data. After finding the pattern, they make classifier to identify the malware.

By analyzing usage of sensitive data

In this method, they firstly analyze the flow of sensitive data in benign applications and

then try same for malicious applications. From these data, they implements different type

of classifier to detect malicious applications.

5

Chapter 3

Android: Architecture, Permissions,

APIs

Android is widely used operating system for moblie devices. In section 3.1, we will discuss

about the architecture of android. In section 3.2, we will discuss permissions required by

any application to access the sensitive resources. In Section 3.3, we will give brief idea

about APIs.

3.1 Architecture

Android is opensource. Android operating system is based on Linux based-software stack

[8]. There are mainly five components in Android software stack. These are:

1. Linux Kernel

2. Native Libraries

3. Android Runtime

4. Application Framework

5. Applications

Chapter 3. Android: Architecture, Permissions, APIs 7

Figure 3.1: The Android Software Stack

3.1.1 Linux Kernel

Linux kernel is root/foundation of the Android platform. Linux kernel is responsible

for device drivers, power management, memory management, device management and

resource access. Linux kernel includes display driver, camera driver, bluetooth driver,

Flash memory driver, Binder (IPC) driver, USB driver, kepad driver, WiFi driver and

Audio Driver.

3.1.2 Native Libraries

Native libraries sits on the top of Linux kernel. Some of native libraries are WebKit,

OpenGL, FreeType, SQLite, Media, C runtime library (libc), etc. The WebKit is used for

browser support, SQLite is used for database, FreeType is used for font support, Media

is used for playing and recording audio and video formats.

7

Chapter 3. Android: Architecture, Permissions, APIs 8

3.1.3 Android Runtime

Android Runtime contains some core libraries and DVM (Dalvik Virtual Machine) which is

responsible to run android application. DVM is similar to JVM but it is more optimized

for mobile devices. It comsumes less memory and provides fast performance. ART is

written to run multiple virtual machines on low-memory devices. Some of the major

features of ART includes the following:

• Ahead-of-time (AOT) and just-in-time (JIT) Compilation.

• Optimized garbage collection (GC).

• Better debugging support, including a dedicated sampling profiler, detailed diag-

nostic exceptions and crash reporting, and the ability to set watchpoints to monitor

specific fields.

3.1.4 Android Framework

Android Framework sits on the top of Native libraries and Android runtime. Android

framework contains Content provider, View system, Activity manager, Window manager,

Telephony manager, resource manager, location manager and XMPP service.

3.1.5 Applications

Last layer of the Android Platform Architecture is applications. It contains applications.

All applications such as home, contact, settings, email, dialer, calendar, camera, etc.

are using Android framework that uses Native libraries and Android runtime. Android

runtime and native libraries are using linear kernel.

3.2 Permissions

If an Android application wants to use any resources such as camera, internet, location,

etc., they need permission from the Android operating system to use them. Android

marshmallow operating system has more than 200 permissions [7]. The main purpose of

8

Chapter 3. Android: Architecture, Permissions, APIs 9

permission is to protect the user data. Android apps must request permission to access

sensitive user data as well as the system features. Depending on the feature, the system

might grant the permission automatically or might prompt the user to approve the request.

Permissions are divided into several protection level. There are three protection levels that

affect third-party apps:

1. Normal permissions

2. Signature permissions

3. Dangerous permissions

3.2.1 Normal Permissions

Normal permissions are used where an needs to access data or resources outside the app’s

sandbox but where there is very little risk to the user’s privacy or the operation of other

apps. According to Android 8.1, following are the list of normal permissions:

• ACCESS LOCATION EXTRA COMMANDS

• ACCESS NETWORK STATE

• ACCESS NOTIFICATION POLICY

• ACCESS WIFI STATE

• BLUETOOTH

• BLUETOOTH ADMIN

• BROADCAST STICKY

• CHANGE NETWORK STATE

• CHANGE WIFI MULTICAST STATE

• CHANGE WIFI STATE

• DISABLE KEYGUARD

• EXPAND STATUS BAR

• GET PACKAGE SIZE

• INSTALL SHORTCUT

• INTERNET

9

Chapter 3. Android: Architecture, Permissions, APIs 10

• KILL BACKGROUND PROCESSES

• MANAGE OWN CALLS

• MODIFY AUDIO SETTINGS

• NFC

• READ SYNC SETTINGS

• READ SYNC STATS

• RECEIVE BOOT COMPLETED

• REORDER TASKS

• REQUEST COMPANION RUN IN BACKGROUND

• REQUEST COMPANION USE DATA IN BACKGROUND

• REQUEST DELETE PACKAGES

• REQUEST IGNORE BATTERY OPTIMIZATIONS

• SET ALARM

• SET WALLPAPER

• SET WALLPAPER HINTS

• TRANSMIT IR

• USE FINGERPRINT

• VIBRATE

• WAKE LOCK

• WRITE SYNC SETTINGS

3.2.2 Signature Permissions

The system grants these app permissions at install time, but only when the app that

attempts to use a permission is signed by the same certificate as the app that defines the

permission. According to Android 8.1, following are the list of signature permissions:

• BIND ACCESSIBILITY SERVICE

• BIND AUTOFILL SERVICE

• BIND CARRIER SERVICES

• BIND CHOOSER TARGET SERVICE

10

Chapter 3. Android: Architecture, Permissions, APIs 11

• BIND CONDITION PROVIDER SERVICE

• BIND DEVICE ADMIN

• BIND DREAM SERVICE

• BIND INCALL SERVICE

• BIND INPUT METHOD

• BIND MIDI DEVICE SERVICE

• BIND NFC SERVICE

• BIND NOTIFICATION LISTENER SERVICE

• BIND PRINT SERVICE

• BIND SCREENING SERVICE

• BIND TELECOM CONNECTION SERVICE

• BIND TEXT SERVICE

• BIND TV INPUT

• BIND VISUAL VOICEMAIL SERVICE

• BIND VOICE INTERACTION

• BIND VPN SERVICE

• BIND VR LISTENER SERVICE

• BIND WALLPAPER

• CLEAR APP CACHE

• MANAGE DOCUMENTS

• READ VOICEMAIL

• REQUEST INSTALL PACKAGES

• SYSTEM ALERT WINDOW

• WRITE SETTINGS

• WRITE VOICEMAIL

11

Chapter 3. Android: Architecture, Permissions, APIs 12

3.2.3 Dangerous Permissions

Dangerous permissions cover areas where the app wants data or resources that involve

the user’s private information, or could potentially affect the user’s stored data or the

operation of other apps. If an app declares that it needs a dangerous permission, the user

has to explicitly grant the permission to the app. Until the user approves the permission,

your app cannot provide functionality that depends on that permission. According to

Android 8.1, following are the list of dangerous permissions:

• READ CALENDAR

• WRITE CALENDAR

• CAMERA

• READ CONTACTS

• WRITE CONTACTS

• GET ACCOUNTS

• ACCESS FINE LOCATION

• ACCESS COARSE LOCATION

• RECORD AUDIO

• READ PHONE STATE

• READ PHONE NUMBERS

• CALL PHONE

• ANSWER PHONE CALLS

• READ CALL LOG

• WRITE CALL LOG

• ADD VOICEMAIL

• USE SIP

• PROCESS OUTGOING CALLS

• BODY SENSORS

• SEND SMS

• RECEIVE SMS

• READ SMS

12

Chapter 3. Android: Architecture, Permissions, APIs 13

• RECEIVE WAP PUSH

• RECEIVE MMS

• READ EXTERNAL STORAGE

• WRITE EXTERNAL STORAGE

3.3 Application Program Interfaces (APIs)

The Android API refers to the collection of various software modules which make up the

complete Android SDK. If we have to use any functionality of android, then we have to

use API corresponding to that functionality.

13

Chapter 4

Method of App Analysis

In Google Play Store, there are lots of malicious applications. So, we have tried to find

the behaviour of application and restrict its malicious intent if any. In section 4.1, we

have discussed our approach. In section 4.2, we have discussed about analysis of some

applications.

4.1 Design Approach

There are nearly 3.6 million applications on Google play store [14]. Not all the applications

are benign on the Google play store. Some applications may have security issues. Android

also supports installation of application from third and third party application can not be

trusted. So, we have proposed a mechanism to determine the behaviour of application.

If we find behaviour of application as malicious, then we have to restrict the malicious

behaviour of applications. We are doing the whole process in following three phases:

1. Analysis of application.

2. Determining behaviour of application.

3. Restricting malicious intent of application.

We are doing static and dynamic analysis of applications. For analyzing the application

we are using Droidmate [10], RiskIndroid [12] and AndroPyTool [6]. From the analysis

we are extracting the permissions and API calls from the applications. After seeing the

Chapter 4. Method of App Analysis 15

Figure 4.1: Workflow of analysis phase

permissions required by applications and API calls it is invoking, we are proposing the

description of the application. Workflow for analysis phase is shown in Figure 4.1.

Using the analyzed data of applications whose class is known (it is known that whether

application is benign or malicious), we are developing the classification model with the

help of various machine learning techniques such as Logistic Regression, Support Vector

Machine, Neural Network and Random Forest. Once the model is built, we are using

that classification model to determine the class of applications that we have analyzed.

Workflow for classification phase is shown in Figure 4.2

Figure 4.2: Workflow of classification phase

Once we know that whether applications are malicious or benign, then we only focus

of malicious applications. We try to restrict the malicious behaviour or intent of the

15

Chapter 4. Method of App Analysis 16

applications by using a wrapper around the applications. Figure 4.3 shows the workflow

of restriction phase.

Figure 4.3: Workflow of restirction phase

4.2 Analysis of Application

In dynamic analysis, we are extracting several information like Unique APIs found, action-

able views seen, unique API+event pairs found, and actionable unique views clicked. We

trace the API calls that have been invoked while triggering UI elements. In static analysis,

we are extracting information about permissions declared and used in application.

For dynamic analysis, we have used DROIDMATE which is fully automatic test gen-

erator for Android application and for static analysis we have used RiskInDroid which

is python tool used for reverse engineering, malware and goodware analysis of Android

application. We have also used AndoPyTool for both Dynamic and static analysis of

applications.

4.2.1 Budget Planner

Budget Planner is an Android application which is used for managing your savings and

expenses. Figure 4.4 shows the screenshot taken during static analysis and Figure 4.5

shows the screenshot taken during dynamic analysis of application.

Permissions

We have extracted the following 9 permissions during the static analysis of Budget Planner

app:

Required and used (4 permissions)

• android.permission.INTERNET - Dangerous

16

Chapter 4. Method of App Analysis 17

Figure 4.4: Screenshot captured during static analysis of Budget Planner app

• android.permission.ACCESS NETWORK STATE - Dangerous

• android.permission.VIBRATE

• android.permission.WAKE LOCK

Required but not used (5 permissions)

• com.google.android.finsky.permission.BIND GET INSTALL REFERRER SERVICE

• com.android.vending.BILLING

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• com.google.android.c2dm.permission.RECEIVE

• mhpro.com.mybudget.permission.C2D MESSAGE

Unique Android SDK API methods

Number of unique API calls count observed in the run is 4. Following is list of first calls

to unique Android SDK API methods:

• 0m 12s - android.telephony.TelephonyManager: java.lang.String getDeviceId()

17

Chapter 4. Method of App Analysis 18

(a) Budget Planner screenshot-1 (b) Budget Planner screenshot-2

Figure 4.5: Screenshot captured during analysis

• 0m 12s - org.apache.http.impl.client.AbstractHttpClient: org.apache.http.

HttpResponse (org.apache.http.HttpHost, org.apache.http.protocol.HttpContext)

• 0m 13s - java.net.Socket: void connect (java.net.SocketAddress,int)

• 0m 13s - android.location.LocationManager: java.lang.String getBestProvider

(android.location.Criteria,boolean)

Unique [API call, event] Android SDK API methods

Number of unique [API call, event] pairs count observed in the run is 5. Following is the

list of first calls to unique Android SDK API methods:

• 0m 12s - reset - android.telephony.TelephonyManager: java.lang.String

getDeviceId()

18

Chapter 4. Method of App Analysis 19

• 0m 12s - reset - org.apache.http.impl.client.AbstractHttpClient: org.apache.

HttpResponse (org.apache.http.HttpHost, org.apache.http.protocol.HttpContext)

• 0m 13s - reset - java.net.Socket: void connect (java.net.SocketAddress,int)

• 0m 13s - reset - android.location.LocationManager: java.lang.String.get.

BestProvider (android.location.Criteria,boolean)

• 2m 17s - background - android.location.LocationManager:java.lang.String.

getBestProvider

(android.location.Criteria,boolean)

Figure 4.6 shows the time at which different APIs and (API call, event) pairs are discov-

ered. Total API discovered is 4 and total (API call,event) pair discoverd is 5.

Figure 4.6: API count vs Exploration time

Actionable views

According Figure 4.7, nearly 180 unique actionable views is seen and 33 out of 180 views

are clicked. The Table 4.1 shows 32 views are clicked once and one views are clicked

thrice.

19

Chapter 4. Method of App Analysis 20

Figure 4.7: API count vs Exploration time

Number of Click Views Count

0 0
1 32
2 0
3 1

Table 4.1: Click Frequency of views

Aggregate stats

Following is the summary of dynamic analysis of Budget planner application:

• File name - budget planner-inlined.apk

• Package name - bdget planner

• Exploration seconds - 153

• Actions - 39

• In this reset actions - 3

• Actionable unique views seen at least once - 178

20

Chapter 4. Method of App Analysis 21

• Actionable unique views clicked or long clicked at least once - 33

• Unique apis - 4

• Unique event api pairs - 5

• Exception - N/A (lack of DeviceException)

4.2.2 BHIM Making India Cashless

Bharat Interface for Money (BHIM) is an initiative to enable fast, secure, reliable cashless

payments through your mobile phone. BHIM is inter operable with other Unified Payment

Interface (UPI) applications, bank accounts for quick money transfers online. Figure 4.8

shows screenshot taken during the analysis of BHIM applications.

Figure 4.8: Screenshot captured during analysis of BHIM app

Permissions

We have extracted the following permissions during the static analysis of BHIM app:

Required and used (6 permissions)

• android.permission.ACCESS FINE LOCATION - Dangerous

• android.permission.ACCESS COARSE LOCATION - Dangerous

21

Chapter 4. Method of App Analysis 22

• android.permission.INTERNET

• android.permission.ACCESS NETWORK STATE

• android.permission.WAKE LOCK

• android.permission.READ PHONE STATE - Dangerous

Required but not used(13 permissions)

• android.permission.SEND SMS - Dangerous

• android.permission.RECEIVE SMS - Dangerous

• android.permission.READ CONTACTS - Dangerous

• android.permission.CALL PHONE - Dangerous

• android.permission.READ SMS - Dangerous

• android.permission.READ PROFILE

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• in.org.npci.upiapp.permission.C2D MESSAGE

• android.permission.ACCESS WIFI STATE

• android.permission.CAMERA - Dangerous

• android.permission.READ EXTERNAL STORAGE - Dangerous

• com.google.android.c2dm.permission.RECEIVE

Not required but used(1 permissions)

• android.permission.VIBRATE

4.2.3 Funnyys

Funnyys is an application which can add charges to your mobile bill by sending costly

SMS messages without informing you first. Figure 4.9 shows screenshot taken during

analysis Funnyys app.

22

Chapter 4. Method of App Analysis 23

Figure 4.9: Screenshot captured during analysis of Funnyys app

Permissions

We have extracted the following permissions during the static analysis of Funnyys app:

Required and used (4 permissions)

• android.permission.CHANGE WIFI STATE

• android.permission.INTERNET

• android.permission.ACCESS NETWORK STATE

• android.permission.ACCESS WIFI STATE

Required but not used (8 permissions)

• android.permission.SEND SMS - Dangerous

• android.permission.RECEIVE SMS - Dangerous

• android.permission.WRITE SMS - Dangerous

• android.permission.READ SMS - Dangerous

• android.permission.VIBRATE

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• android.permission.CAMERA - Dangerous

23

Chapter 4. Method of App Analysis 24

• android.permission.READ PHONE STATE - Dangerous

Not required but used(1 permission)

• android.permission.WAKE LOCK

4.2.4 Omingo

This app lets hackers control your device, giving them unauthorized access to your data.

Figure 4.10 shows screenshot taken during analysis of Omingo app.

Figure 4.10: Screenshot captured during analysis of Omingo app

Permissions

We have extracted the following permissions during the static analysis of Omingo app:

Required and used (4 permissions)

• android.permission.INTERNET

• android.permission.ACCESS NETWORK STATE

• android.permission.ACCESS WIFI STATE

• android.permission.READ PHONE STATE - Dangerous

24

Chapter 4. Method of App Analysis 25

Required but not used (19 permissions)

• android.permission.RECEIVE SMS - Dangerous

• android.permission.SEND SMS - Dangerous

• android.permission.WRITE APN SETTINGS

• android.permission.CLEAR APP CACHE

• android.permission.READ SMS - Dangerous

• android.permission.RECEIVE WAP PUSH

• android.permission.INSTALL PACKAGES - Dangerous

• android.permission.CLEAR APP USER DATA

• android.permission.MOUNT UNMOUNT FILESYSTEMS

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.DELETE CACHE FILES

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• android.permission.REBOOT - Dangerous

• android.permission.RESTART PACKAGES - Dangerous

• android.permission.CHANGE WIFI STATE

• android.permission.WAKE LOCK

• android.permission.CHANGE NETWORK STATE

• android.permission.SET WALLPAPER

• android.permission.DELETE PACKAGES - Dangerous

Not required but used(3 permission)

• android.permission.ACCESS FINE LOCATION - Dangerous

• android.permission.ACCESS COARSE LOCATION - Dangerous

• android.permission.VIBRATE

4.2.5 System Certificate

System Certificate is a fake application which can damage your device and steal your

data. Figure 4.11 shows the screenshot taken during static analysis of System Certificate

app.

25

Chapter 4. Method of App Analysis 26

Figure 4.11: Screenshot captured during analysis of System Certificate app

Permissions

We have extracted the following permissions during the static analysis of System Certifi-

cate app:

Required and used (4 permissions)

• android.permission.INTERNET

• android.permission.ACCESS NETWORK STATE

• android.permission.ACCESS WIFI STATE

• android.permission.READ PHONE STATE - Dangerous

Required but not used (1 permissions)

• android.permission.WAKE LOCK

4.2.6 Tez – A new payments app by Google

Tez is an application send money to others. It is developed by Google. It is based on

UPI. Figure 4.12 shows the screenshot taken during the analysis Tez app.

26

Chapter 4. Method of App Analysis 27

Figure 4.12: Screenshot captured during analysis of Tez app

Permissions

We have extracted the following permissions during the static analysis of Tez app:

Required and used (6 permissions)

• android.permission.INTERNET

• android.permission.VIBRATE

• android.permission.ACCESS NETWORK STATE

• android.permission.WAKE LOCK

• android.permission.BLUETOOTH

• android.permission.READ PHONE STATE - Dangerous

Required but not used (14 permissions)

• android.permission.SEND SMS - Dangerous

• android.permission.RECEIVE SMS - Dangerous

• android.permission.READ CONTACTS - Dangerous

• android.permission.GET ACCOUNTS - Dangerous

• android.permission.READ SMS - Dangerous

• android.permission.GET PACKAGE SIZE

27

Chapter 4. Method of App Analysis 28

• android.permission.RECORD AUDIO - Dangerous

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.ACCESS FINE LOCATION - Dangerous

• android.permission.ACCESS WIFI STATE

• android.permission.CAMERA - Dangerous

• android.permission.MANAGE ACCOUNTS - Dangerous

• com.google.android.c2dm.permission.RECEIVE

• com.google.android.providers.gsf.permission.READ GSERVICES

Not required but used (2 permission)

• android.permission.ACCESS COARSE LOCATION - Dangerous

• android.permission.MODIFY AUDIO SETTINGS

4.2.7 MMS Beline

MMS Beline is an application which can call phone number and also send SMS without

informing you, which will lead to increase in mobile bill. This application can steal your

data and can run with administrative permissions. Figure 4.13 shows the screenshot taken

during the static analysis of MMS Beline.

Permissions

We have extracted the following permissions during the static analysis of MMS beline

app:

Required and used (5 permissions)

• android.permission.ACCESS FINE LOCATION - Dangerous

• android.permission.ACCESS COARSE LOCATION - Dangerous

• android.permission.INTERNET

• android.permission.GET TASKS

• android.permission.READ PHONE STATE - Dangerous

28

Chapter 4. Method of App Analysis 29

Figure 4.13: Screenshot captured during analysis of MMS Beline app

Required but not used (16 permissions)

• android.permission.SEND SMS - Dangerous

• android.permission.RECEIVE SMS - Dangerous

• android.permission.READ CONTACTS - Dangerous

• android.permission.WRITE SMS - Dangerous

• android.permission.READ SMS - Dangerous

• android.permission.CALL PHONE - Dangerous

• android.permission.SYSTEM ALERT WINDOW

• android.permission.RECORD AUDIO - Dangerous

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• android.permission.KILL BACKGROUND PROCESSES - Dangerous

• android.permission.READ CALL LOG - Dangerous

• android.permission.ACCESS NETWORK STATE

• android.permission.WAKE LOCK

• android.permission.CAMERA - Dangerous

• android.permission.READ EXTERNAL STORAGE - Dangerous

29

Chapter 4. Method of App Analysis 30

4.2.8 Google Calendar

Google Calendar is the free time management web application offered by Google.Google

Calendar allows users to create and edit events. Reminders can be enabled for events, with

options available for type and time. Event locations can also be added, and other users

can be invited to events. Users can enable or disable the visibility of special calendars,

including Birthdays, where the app retrieves dates of births from Google contacts and

displays birthday cards on a yearly basis, and Holidays, a country-specific calendar that

displays dates of special occasions. Figure 4.14 shows the screenshot taken during the

static analysis of Calendar app.

Figure 4.14: Screenshot captured during analysis

Permissions

We have extracted the following permissions during the static analysis of Calendar app:

Required and used (8 permissions)

• android.permission.ACCESS FINE LOCATION - Dangerous

• android.permission.ACCESS COARSE LOCATION - Dangerous

• android.permission.INTERNET

• android.permission.VIBRATE

30

Chapter 4. Method of App Analysis 31

• android.permission.ACCESS NETWORK STATE

• android.permission.WAKE LOCK

• android.permission.RECORD AUDIO - Dangerous

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

Required but not used (13 permissions)

• android.permission.GET ACCOUNTS - Dangerous

• android.permission.READ SYNC SETTINGS

• android.permission.WRITE CALENDAR - Dangerous

• android.permission.SYSTEM ALERT WINDOW

• android.permission.READ CALENDAR - Dangerous

• com.android.vending.BILLING

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.READ SYNC STATS

• android.permission.GET TASKS

• android.permission.READ EXTERNAL STORAGE - Dangerous

• android.permission.WRITE SETTINGS

• android.permission.READ PHONE STATE

• com.google.android.providers.gsf.permission.READ GSERVICES

Unique Android SDK API methods

Number of unique API calls count observed in the run is 4. Following is list of first calls

to unique Android SDK API methods:

• 0m 12s - android.app.ActivityThread: void installContentProviders (android.

content.Context, java.util.List)

• 0m 12s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String,android.os. CancellationSignal)

31

Chapter 4. Method of App Analysis 32

• 0m 12s - android.content.ContentResolver: android.database. Cursor query

(android.net.Uri, java.lang.String[], java.lang.String,java.lang.String[],

java.lang.String, android.os. CancellationSignal)

• 0m 12s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String,android.os. CancellationSignal)

• 0m 12s - android.content.ContentResolver:void registerContentObserver(

android.net.Uri, boolean ,android.database.ContentObserver, int)

• 0m 12s - android.content.ContentResolver: void registerContentObserver

(android.net.Uri, boolean, android.database.ContentObserver, int)

• 0m 12s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String, android.os. CancellationSignal)

• 0m 12s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String,android.os. CancellationSignal)

• 0m 24s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String,java.lang.String[],

java.lang.String,android.os. CancellationSignal)

• 0m 27s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String,java.lang.String[],

java.lang.String,android.os. CancellationSignal)

• 0m 31s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java. lang.String,java.lang.String[],

j ava.lang.String,android.os. CancellationSignal)

• 0m 33s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

32

Chapter 4. Method of App Analysis 33

java.lang.String, android.os. CancellationSignal)

• 0m 38s - android.content.ContentResolver: android.database. Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String,android. os.CancellationSignal)

• 0m 38s - android.content.ContentResolver: void registerContentObserver

(android.net.Uri, boolean, android.database.ContentObserver, int)

• 1m 21s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String, android.os. CancellationSignal)

• 1m 23s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String,android.os. CancellationSignal)

• 1m 54s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String, android.os. CancellationSignal)

• 1m 56s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String, android.os. CancellationSignal)

• 2m 11s - android.content.ContentResolver: android.database.Cursor query

(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[],

java.lang.String, android.os. CancellationSignal)

Figure 4.15 shows the time at which different APIs and (API call, event) pairs are

discovered. Total API discovered is 4 and total (API call,event) pair discovered is 5.

Actionable views

According Figure 4.16, nearly 180 unique actionable views is seen and 33 out of 180 views

are clicked. The Table 4.2 shows 18 views are clicked once and 6 views are clicked twice.

33

Chapter 4. Method of App Analysis 34

Figure 4.15: API count vs Exploration time

Figure 4.16: API count vs Exploration time

Aggregate stats

Following is the summary of dynamic analysis of Google Calendar application:

34

Chapter 4. Method of App Analysis 35

Number of Click Views Count

0 0
1 18
2 6

Table 4.2: Click Frequency of views

• File name - Calendar-inlined.apk

• Package name - com.google.android.calendar

• Exploration seconds - 167

• Actions - 35

• In this reset actions - 4

• Actionable unique views seen at least once - 40

• Actionable unique views clicked or long clicked at least once - 22

• Unique apis - 19

• Unique event api pairs - 22

• Exception - N/A (lack of DeviceException)

4.2.9 Laughtter

Laughtter is an application which can add charges to your mobile bill by sending costly

SMS message without informing you first. Figure 4.17 shows the screenshot taken during

analysis of Laughtter app.

Permissions

We have extracted the following permissions during the static analysis of Laughtter app:

Required and used (4 permissions)

• android.permission.CHANGE WIFI STATE

• android.permission.INTERNET

• android.permission.ACCESS NETWORK STATE

35

Chapter 4. Method of App Analysis 36

Figure 4.17: Screenshot captured during analysis of Laughtter app

• android.permission.ACCESS WIFI STATE

Required but not used (8 permissions)

• android.permission.SEND SMS - Dangerous

• android.permission.RECEIVE SMS - Dangerous

• android.permission.WRITE SMS - Dangerous

• android.permission.READ SMS - Dangerous

• android.permission.VIBRATE

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• android.permission.CAMERA - Dangerous

• android.permission.READ PHONE STATE - Dangerous

Not required but used (1 permissions)

• android.permission.WAKE LOCK

4.2.10 Android Framework

Android Framework lets control your device, giving them unauthorized access to your

data. Figure 4.18 shows the screenshot taken during static analysis of the application.

36

Chapter 4. Method of App Analysis 37

Figure 4.18: Screenshot captured during analysis of Android Framework app

Permissions

We have extracted following permissions during the analysis of Android Framework ap-

plication:

Requested and used (9 permissions)

• android.permission.ACCESS FINE LOCATION - Dangerous

• android.permission.ACCESS COARSE LOCATION - Dangerous

• android.permission.CHANGE WIFI STATE

• android.permission.INTERNET

• android.permission.ACCESS NETWORK STATE

• android.permission.WAKE LOCK

• android.permission.ACCESS WIFI STATE

• android.permission.RECORD AUDIO - Dangerous

• android.permission.READ PHONE STATE - Dangerous

Requested but not used (16 permissions)

• android.permission.READ CONTACTS - Dangerous

• android.permission.READ SMS - Dangerous

37

Chapter 4. Method of App Analysis 38

• android.permission.CALL PHONE - Dangerous

• android.permission.MODIFY PHONE STATE - Dangerous

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.WRITE EXTERNAL STORAGE - Dangerous

• android.permission.PROCESS OUTGOING CALLS - Dangerous

• android.permission.WRITE CONTACTS - Dangerous

• android.permission.RECEIVE SMS - Dangerous

• android.permission.SEND SMS - Dangerous

• android.permission.WRITE APN SETTINGS

• android.permission.WRITE SMS - Dangerous

• android.permission.BROADCAST PACKAGE REMOVED

• android.permission.CHANGE NETWORK STATE

• android.permission.MODIFY AUDIO SETTINGS

• android.permission.READ EXTERNAL STORAGE - Dangerous

38

Chapter 5

App Classification Models

Classification is the technique to classify new observation on the basis of a set of data con-

taining observations whose class is known [22]. Classification is considered as an instance

of supervised learning i.e. learning where training set of correctly identified observation

is available. To build a classification model we need labelled data. We train classification

model with using machine learning algorithm. Figure 5.1 shows the workflow of building

the model. Once the model is trained, we feed new observation into classification model to

classify them. Figure 5.2 shows the architecture of classifying the new observation using

trained Model.

Figure 5.1: Workflow of building a classification model.

To check the performance of model we have used confusion matrix [17]. A confusion

matrix is a summary of prediction results on a classification problem. The number of

correct and incorrect predictions are summarized with count values and broken down by

each class. The confusion matrix shows the ways in which your classification model is

confused when it makes predictions. It gives us insight not only into the errors being

made by a classifier but more importantly the types of errors that are being made. A

Chapter 5. App Classification Models 40

Figure 5.2: Workflow of classifying the new observations.

classification model is good if there is high value along the diagonal of confusion matrix.

Table 5.1 shows the general confusion matrix.

Actual
Predicted
Benign Malicious

Benign TB FM
Malicious FB TM

Table 5.1: Confusion Matrix

Definition of the Terms:

• Benign (B): Observation is benign.

• Malicious (M): Observation is malicious.

• True Benign (TB): Observation is benign, and is predicted to be benign.

• False Malicious (FM): Observation is benign, but is predicted malicious.

• True Malicious (TM): Observation is malicious, and is predicted to be malicious.

• False Benign (FM): Observation is malicious, but is predicted benign.

We have collected the labelled data of 26000+ applications [13]. Data set contains

observations/traces of 25593 benign applications and 741 malicious applications. API calls

has been used as the feature vector for application. Each application has 854 features.

We have developed various classification models using machine learning techniques to

classify new applications as benign or malicious. We have used following machine learning

techniques:

40

Chapter 5. App Classification Models 41

1. Logistic Regression

2. Support Vector Machine

3. Neural Network

4. Random Forest

5.1 Logistic Regression

Logistic Regression is a classification technique which is is usually taken to apply to a

binary dependent variable [20]. We have divided the data set into training set which is

80% of the total data set and testing set which 20% of the total data set. We have trained

our model on the training set and have checked the performance of the model on test

data. Model classifies 93.8% of benign correctly and 83.4% of malicious app correctly.

Table 5.2 shows the confusion matrix obtained from Logistic regression model. We have

Actual
Predicted
benign malicious

benign 93.8 6.2
malicious 16.6 83.4

Table 5.2: Confusion matrix for Logistic regression

used this model to predict the class of applications which we have analyzed. Following

application is classified as benign:

• Budget Planner

• BHIM Making India Cashless

• System Certificate

• Tez: A new payment app by Google

• Google Calendar

Following application is classified as malicious:

• Funnyys

41

Chapter 5. App Classification Models 42

• Omingo

• MMS Beline

• Laughtter

• Android Framework

5.2 Support Vector Machine

In machine learning, Support Vector Machine (SVM) is considered as supervised learn-

ing models associated with learning algorithms [23]. Here, we have used this model for

classification. We have divided the data set into training set which is 80% of the total

data set and testing set which 20% of the total data set. We have trained our model

on the training set and have checked the performance of the model on test data. Model

classifies 92.6% of benign correctly and 78.7% of malicious app correctly. Table 5.3 shows

the confusion matrix obtained from Support Vector Machine model. We have used this

Actual
Predicted
benign malicious

benign 92.6 7.4
malicious 21.3 78.7

Table 5.3: Confusion matrix for Support Vector Machine

model to predict the class of applications which we have analyzed. Following application

is classified as benign:

• Budget Planner

• Funnyys

• BHIM Making India Cashless

• System Certificate

• Tez: A new payment app by Google

• Google Calendar

42

Chapter 5. App Classification Models 43

Following application is classified as malicious:

• Omingo

• MMS Beline

• Laughtter

• Android Framework

5.3 Neural Network

A Artificial Neural Network (ANN) or Neural Network (NN) is a machine learning tech-

nique which is inspired from the biological nervous system [16]. An ANN is based on a

collection of connected units or nodes called artificial neurons which loosely model the

neurons in a biological brain. We have divided the data set into training set which is 80%

of the total data set and testing set which 20% of the total data set. We have trained our

model on the training set and have checked the performance of the model on test data.

Model classifies 96.3% of benign correctly and 86.6% of malicious app correctly. Table

5.4 shows the confusion matrix obtained from Neural Network model. We have used this

Actual
Predicted
benign malicious

benign 96.3 3.7
malicious 13.4 86.6

Table 5.4: Confusion matrix for Neural Network

model to predict the class of applications which we have analyzed. Following application

is classified as benign:

• Budget Planner

• BHIM Making India Cashless

• Tez: A new payment app by Google

• Google Calendar

43

Chapter 5. App Classification Models 44

Following application is classified as malicious:

• Funnyys

• Omingo

• System Certificate

• MMS Beline

• Laughtter

• Android Framework

5.4 Random Forest

Random Forest is a machine learning technique for classification, regression and other

tasks [21]. It is made up of various decision trees [19]. We have used random forest for

classification. We have divided the data set into training set which is 80% of the total

data set and testing set which 20% of the total data set. We have trained our model

on the training set and have checked the performance of the model on test data. Model

classifies 97.2% of benign correctly and 87.1% of malicious app correctly. Table 5.5 shows

the confusion matrix obtained from Random Forest model. We have used this model to

Actual
Predicted
benign malicious

benign 97.2 2.8
malicious 12.9 87.1

Table 5.5: Confusion matrix for Random Forest

predict the class of applications which we have analyzed. Following application is classified

as benign:

• Benigin apps: Budget Planner, BHIM Making India Cashless, Tez and Google

Calendar.

• Malicious apps: Funnyys, Omingo, System Certificate, MMS Beline, Laughtter

and Android Framework.

44

Chapter 5. App Classification Models 45

5.5 Comparison

We have used four classification algorithms namely Logistic Regression, Support Vector

Machine (SVM), Neural Network, and Random Forest. Table 5.6 shows the comparison

of accuracy of different algorithms.

Algorithm Accuracy of benign
apps

Accuracy of mali-
cious app

Logistic Regression 93.8% 83.4%
Support Vector Machine 92.6% 78.7%
Neural Network 96.3% 86.6%
Random Forest 97.2% 87.1%

Table 5.6: Comparison of accuracy of different algorithms

Table 5.7 gives the information about whether app is identified as benign or malicious by

various machine learning algorithms.

Algorithm Logistic Re-
gression

SVM Neural Net-
work

Random For-
est

Budget Planner benign benign benign benign
BHIM benign benign benign benign
Funnyys malicious benign malicious malicious
Omingo malicious malicious malicious malicious
System Certifi-
cate

benign benign malicious malicious

Tez benign benign benign benign
MMS Beline malicious malicious malicious malicious
Google Calendar benign benign benign benign
Laughtter malicious malicious malicious malicious
Android Frame-
work

malicious malicious malicious malicious

Table 5.7: Categorization of apps into benign and malicious by various algorithm

45

Chapter 6

Restricting Malicious Intent of

Application

Android current security system is based on the permissions. If an application needs to

access any sensitive data or sensors which is considered as dangerous, then they need per-

missions to do that. In current security scenario, we can restrict the particular permission

of an application. But major problem with current scenario is if we restrict the particular

permission of an application, then application will not work properly as shown in Figure

6.1.

Apart from the permissions, there are more things that can be used to exploit the

private data of user and also can be used to degrade the performance of the device itself.

Some of those are clipboard, view, etc. Clipboard is buffer which is used to hold the data

copied from any application. Since clipboard is accessible to all applications, any appli-

cation can read the data from clipboard and can send it to third party server. Currently,

we can to stop applications from accessing clipboard data. Some applications opens the

browser via link. We can stop link from opening in the browser.

Currently if an application asks permission to access message, then application will get

permissions for both send message and read message. If we want to restrict an application

such that it can read message but can not send. In other words, we want to control the

permission of application at API level. But currently this feature is not provided by

Android operating system.

We have to restrict the malicious behaviour of applications. Since, currently every

Chapter 6. Restricting Malicious Intent of Application 47

(a) When permission to access phone is de-
nied.

(b) When permission to access message is
denied.

Figure 6.1: Problems in Android current security scheme

application runs in its own process, with its own instance of the Dalvik virtual machine

(DVK)/ Android runtime (ART). So, we can not restrict applications by developing an-

other at fifth layer of the Android software stack. One way to restrict the malicious

behaviour of applications is by modifying the Android Package (APK) file. For modifying

the APK file, we have to decompile it and it convert it into smali and then we can change

code of application. Smali is more of assembly based language so making change in smali

is tedious task. Another way to restrict applications is without modifying the APK file.

We can restrict applications at the system level by modifying the Random access memory

(ROM). We have used Xposed framework [3] to achieve this.

47

Chapter 6. Restricting Malicious Intent of Application 48

6.1 Wrapping Applicaitons

Xposed is framework for module which can restrict or change the behaviour of the system

and applications without touching any APKs. Xposed works at system level so your

device should be rooted. Instead of modifying corresponding DEX or ART representation

of the application, it is deeply integrated with the Android system where it replaces some

system components after backing up the originals. There are multiple advantages to this

approach. Some of them are:

• you can modify parts of the system you otherwise could not.

• you can apply multiple modifications to the same app in a combination best fitting

your intentions.

• changes are easy to undo: As all changes are done in the memory, you just need to

deactivate the module and reboot to get your original system back.

Zygote is the main process of the Android runtime. Every application is started as

a copy (“fork”) of it. So, this process is also called as the head of Android runtime.

This process is started by an /int.rc script when your phone is booted. The process

is done with /system/bin/app process, which loads the needed classes and invokes the

initialization methods.

Xposed framework creates an extended version of existing app process. When you

install the framework, a modified and extended app process is copied to /sytem/bin. This

extended startup process adds an additional jar to the classpath and calls methods from

there at certain places. For instance, just after the VM has been created, even before the

main method of Zygote has been called. And inside that method, we are part of Zygote

and can act in its context. So, now we can control the method calls of other application

from there.

To provide the security, we have to restrict the method calls from the application.

When an application calls any method, we can do three things with that method. Either

48

Chapter 6. Restricting Malicious Intent of Application 49

(a) When permission to access phone is de-
nied.

(b) When permission to access message is
denied.

Figure 6.2: App working properly after restrictions

we can change the parameter of method or we can change body of the method. We can

also leave the method unmodified. We have modified the existing modules of Xposed

framework to control the methods. Now, if an application wants to access the resource,

then we can feed the application with no data of fake data. We have restricted the

applications from accessing contacts and messages. Since Xposed module does not revoke

or block permissions from an application, so most application will continue to work as

before and won’t force close or crash as shown in Figure 6.2. Now, we can also control

the applications at API level. We can also restrict the application from pasting the data

from clipboard either manually or automatically.

49

Chapter 6. Restricting Malicious Intent of Application 50

6.2 Implementation

Android provides different layers of software stack to handle different things. Currently,

if an application invokes any methods, it is handled by Binder IPC module. Binder IPC

module binds the method with native libraries. Interaction between apps, application

framework, and linux kernel on Android is shown in Figure 6.3.

Figure 6.3: Interaction between apps, application framework, and Linux kernel on Android

Xposed framework modifies the app process file of /sytem/bin and adds an extra jar

file to Android to intercept the methods. Since, it modifies the app process and every

other process is child process of app process, so Xposed becomes the integral part of the

every methods. Workflow of Xposed framework is shown in Figure 6.4.

Xposed framework provides mechanism to intercept method calls of any application.

Xposed provides handleHookedMethod to handle the methods call of applications. Using

this method we can modify the parameters of method, or body of methods. It also

provides two more methods namely beforeHookedMethod and afterHookedMethod. We

can modify this method to achieve the desired results. We have modified the existing

modules of exposed framework to restrict different permissions. We have modified it such

that it gives the fake data or no data to the applications, so applications work properly.

50

Chapter 6. Restricting Malicious Intent of Application 51

Figure 6.4: Interaction between apps, application framework, and Linux kernel on Android

6.3 Case Study

We have analyzed 10 applications. After analyzing, we have categorized the applications

into classes namely benign and malicious. Following applications have been labelled as

the benign:

• Budget Planner

• BHIM Making India Cashless

• Tez: A new payment app by Google

• Google Calendar

Since, these applications are benign we do not have to restrict any permissions of the

applications. Following applications have been labelled as the malicious:

• Funnyys

• Omingo

• System Certificate

• MMS Beline

• Laughtter

• Android Framework

Since, these applications are malicious we have restricted its malicious behaviour by

wrapping it. Permissions which are causing malicious behaviour is denied.

51

Chapter 6. Restricting Malicious Intent of Application 52

Funnyys

Funnys is an online game applications, so it does not require permissions to access message,

phone and camera. So we have restricted the following permissions:

• android.permission.SEND SMS

• android.permission.RECEIVE SMS

• android.permission.WRITE SMS

• android.permission.READ SMS

• android.permission.CAMERA

Omingo

This app lets hackers control your device, giving them unauthorized access to your data.

To prevent the malicious behaviour of this application, we have restricted following per-

missions:

• android.permission.RECEIVE SMS

• android.permission.SEND SMS

• android.permission.WRITE APN SETTINGS

• android.permission.CLEAR APP CACHE

• android.permission.READ SMS

• android.permission.RECEIVE WAP PUSH

• android.permission.INSTALL PACKAGES

• android.permission.CLEAR APP USER DATA

• android.permission.MOUNT UNMOUNT FILESYSTEMS

• android.permission.RECEIVE BOOT COMPLETED

• android.permission.DELETE CACHE FILES

• android.permission.WRITE EXTERNAL STORAGE

• android.permission.REBOOT

• android.permission.RESTART PACKAGES

• android.permission.DELETE PACKAGES

52

Chapter 6. Restricting Malicious Intent of Application 53

System Certificate

System Certificate is a fake application which can damage your device and steal your

data. To stop its malicious intent, we have restricted the following permissions:

• android.permission.INTERNET

MMS Beline

MMS Beline is a third party application which can increase your mobile bill by sending

message and by calling to the premium number. This application is installed by another

malicious applications. It runs in background. We have to uninstall this application

because this application is of no use.

Lughtter

It is another application which can add charges to your mobile bill by sending costly SMS

message without informing you first. So we have restricted the following permissions:

• android.permission.SEND SMS

• android.permission.RECEIVE SMS

• android.permission.WRITE SMS

• android.permission.READ SMS

• android.permission.CAMERA

• android.permission.READ PHONE STATE

Android Framework

Android Framework is a third party application which can increase your mobile bill by

sending message and by calling to the premium number. It can install other malicious

applications to your device. So we have to uninstall this application.

Duet

Duet is a game. We have restricted access to identification, internet, location, phone, and

view. Though, we have restricted some access for application still it is working properly.

Figure 6.5 shows the screenshot of application working properly after restrictions.

53

Chapter 6. Restricting Malicious Intent of Application 54

(a) Screenshot- 1 (b) Screenshot- 2

Figure 6.5: App working properly after restrictions

54

Chapter 7

Conclusion and Future Work

In this work we have presented 4 different machine learning models that are trained on

a well-known permission classification dataset. We could improve the identification and

classification on Android apps with higher accuracy than the available current methods.

We have presented our approach with running case studies on a few Android apps and

presented our tool’s accuracy in identification of malicious apps. Our approach involved a

mix of static and dynamic analysis such that even the apps that have unused APIs present

in the code that can be traversed post classification of the app as benign by the application

store. We have restricted the malicious behaviour of application without interrupting its

execution.

As an extension of this work, one may automate the process of permission classification

of installed apps. Currently, we are manually deciding which permissions are causing

malicious behaviour in a particular application. We can integrate our app classification

model with a tool which can give the list permissions which are causing the malicious

behaviour.

Bibliography

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flowdroid:

Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android

apps. Acm Sigplan Notices 49(6):259–269.

[2] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid: behavior-

based malware detection system for android. In Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices . ACM, pages 15–26.

[3] XDA contributors. 2014. Xposed framework. https://forum.xda-developers.com/

xposed/xposed-installer-versions-changelog-t2714053.

[4] Thomas Debize. 2012. Androwarn. https://github.com/maaaaz/androwarn/.

[5] Android devlopers. 2018. Android runtime. https://source.android.com/devices/

tech/dalvik/.

[6] Alejandro Mart́ın Garćıa. 2018. Andropytool for dynamic analysis and static analysis.

https://github.com/alexMyG/AndroPyTool.

[7] Google Developers. 2018. Android permissons. https://developer.android.com/

guide/topics/permissions/overview.

[8] Google Developers. 2018. Android platform architecture. https://developer.

android.com/guide/platform/.

[9] Takamasa Isohara, Keisuke Takemori, and Ayumu Kubota. 2011. Kernel-based behav-

56

https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
https://github.com/maaaaz/androwarn/
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
https://github.com/alexMyG/AndroPyTool
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/

Bibliography 57

ior analysis for android malware detection. In Computational Intelligence and Security

(CIS), 2011 Seventh International Conference on. IEEE, pages 1011–1015.

[10] Konrad Jamrozik and Andreas Zeller. 2016. Droidmate: a robust and extensible test

generator for android. In Mobile Software Engineering and Systems (MOBILESoft),

2016 IEEE/ACM International Conference on. IEEE, pages 293–294.

[11] Ryan Johnson, Zhaohui Wang, Corey Gagnon, and Angelos Stavrou. 2012. Analysis

of android applications’ permissions. In Software Security and Reliability Companion

(SERE-C), 2012 IEEE Sixth International Conference on. IEEE, pages 45–46.

[12] Alessio Merlo and Gabriel Claudiu Georgiu. 2017. Riskindroid: Machine learning-

based risk analysis on android. In IFIP International Conference on ICT Systems

Security and Privacy Protection. Springer, pages 538–552.

[13] Prof. Zeller. 2014. dataset. https://www.st.cs.uni-saarland.de/appmining/

chabada/.

[14] Statista. 2018. Available application in google play

store. https://www.statista.com/statistics/266210/

number-of-available-applications-in-the-google-play-store/.

[15] Statista. 2018. Global market share of smartphone oper-

ating system. https://www.statista.com/statistics/266136/

global-market-share-held-by-smartphone-operating-systems/.

[16] Wikipedia contributors. 2018. Artificial neural network — Wikipedia, the free en-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Artificial_neural_

network&oldid=846600702.

[17] Wikipedia contributors. 2018. Confusion matrix — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=

844134813.

57

https://www.st.cs.uni-saarland.de/appmining/chabada/
https://www.st.cs.uni-saarland.de/appmining/chabada/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=846600702
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=846600702
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=844134813
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=844134813

Bibliography 58

[18] Wikipedia contributors. 2018. Dalvik (software) — Wikipedia, the free encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Dalvik_(software)&oldid=

840000078.

[19] Wikipedia contributors. 2018. Decision tree learning — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Decision_tree_learning&

oldid=845025616.

[20] Wikipedia contributors. 2018. Logistic regression — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Logistic_regression&

oldid=844391326.

[21] Wikipedia contributors. 2018. Random forest — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=

846743962.

[22] Wikipedia contributors. 2018. Statistical classification — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/w/index.php?title=Statistical_

classification&oldid=845256559.

[23] Wikipedia contributors. 2018. Support vector machine — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Support_vector_machine&

oldid=842541213.

58

https://en.wikipedia.org/w/index.php?title=Dalvik_(software)&oldid=840000078
https://en.wikipedia.org/w/index.php?title=Dalvik_(software)&oldid=840000078
https://en.wikipedia.org/w/index.php?title=Decision_tree_learning&oldid=845025616
https://en.wikipedia.org/w/index.php?title=Decision_tree_learning&oldid=845025616
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=844391326
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=844391326
https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=846743962
https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=846743962
https://en.wikipedia.org/w/index.php?title=Statistical_classification&oldid=845256559
https://en.wikipedia.org/w/index.php?title=Statistical_classification&oldid=845256559
https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=842541213
https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=842541213

	Dissertation Approval
	Declaration of Authorship
	Abstract
	List of Figures
	1 Introduction
	2 Background & Related Work
	3 Android: Architecture, Permissions, APIs
	3.1 Architecture
	3.1.1 Linux Kernel
	3.1.2 Native Libraries
	3.1.3 Android Runtime
	3.1.4 Android Framework
	3.1.5 Applications

	3.2 Permissions
	3.2.1 Normal Permissions
	3.2.2 Signature Permissions
	3.2.3 Dangerous Permissions

	3.3 Application Program Interfaces (APIs)

	4 Method of App Analysis
	4.1 Design Approach
	4.2 Analysis of Application
	4.2.1 Budget Planner
	4.2.2 BHIM Making India Cashless
	4.2.3 Funnyys
	4.2.4 Omingo
	4.2.5 System Certificate
	4.2.6 Tez – A new payments app by Google
	4.2.7 MMS Beline
	4.2.8 Google Calendar
	4.2.9 Laughtter
	4.2.10 Android Framework

	5 App Classification Models
	5.1 Logistic Regression
	5.2 Support Vector Machine
	5.3 Neural Network
	5.4 Random Forest
	5.5 Comparison

	6 Restricting Malicious Intent of Application
	6.1 Wrapping Applicaitons
	6.2 Implementation
	6.3 Case Study

	7 Conclusion and Future Work
	Acknowledgements

