
OpenEMRx: Blockchain Extenions
to OpenEMR for Patient EMR

Control & Privacy

A thesis submitted in fulfillment of the requirements of the degree of

Master of Technology (M.Tech)

by

Anand Kumar

Roll no. 163050089

Supervisor:

Prof. R.K. Shyamasundar

Department of Computer Science & Engineering

Indian Institute of Technology Bombay

2018

Acknowledgements

I would like to thank my advisor, Prof. R.K. Shyamasundar for his valuable guid-

ance and regular discussions and advice throughout the course of the work. I would also

like to thank Dr. Vishwas Patil, for the help extended in the form of discussions and

advice regarding the approach and methodology in realizing the aim we set forth for this

project.

iii

Abstract

In the past, the medical record was a paper repository of information that was reviewed

or used for clinical and research purposes. It was severely limited in terms of accessibility,

available to only one user at a time. Patients rarely viewed their medical records. Now

the most of the hospitals are adopting the Electronic Health Records System(EHR), and

these EHR systems have been one of the factors in transforming healthcare and health

management. But still, the patients have a very small role in defining access for permis-

sion for their own Electronic Medical Records. Also, the data stored in the database is in

the plain text, which can be exported by the hospital staff without patient’s permission/-

knowledge. Exporting and seeing patient data without permission creates the privacy

problem. This motivates us to create an EHR system, which provides better privacy and

control over EMR to the patients. In the dissertation, we have created a proof of concept

for the Electronic Health Care Records system using blockchain with the goal of flexibility,

security and preserving the privacy of patient information. In this EHR systems, we have

empowered the patients by giving them the control of their medical data. The permission

to access the medical data of the patient is stored on the blockchain and whenever any

hospital staff wants to access the patient’s data, that hospital staffs get the permissions

from the blockchain and on the basis of those permissions, the staff can access the en-

crypted patient data.

iv

Contents

Dissertation Approval i

Declaration of Authorship ii

Acknowledgements iii

Abstract iv

List of Figures viii

1 Introduction 1

2 Background and Related Work 3

3 OpenEMR and Ethereum 15

3.1 OpenEMR . 15

3.1.1 Data classification in OpenEMR . 16

3.1.2 OpenEMR Access Policy . 17

3.1.3 Issues with OpenEMR . 17

3.2 Ethereum . 18

3.2.1 Ether . 18

3.2.2 Ethereum Account . 19

3.2.3 Ethereum Transaction . 19

3.2.4 Scripting Languages . 20

3.2.5 Smart Contracts . 20

3.2.6 Interacting with smart contract . 20

v

List of Figures CONTENTS

3.2.7 Smart Contract Deployment . 21

3.2.8 Ethereum Virtual Machine . 21

3.2.9 Gas . 21

4 OpenEMRx: Using Smart Contracts to Manage EMR 22

4.1 Design . 23

4.2 Our Default Policy . 24

4.2.1 Physician’s access Policy . 24

4.2.2 Nurse’s access Policy . 25

4.2.3 Database Encryption . 26

4.3 Implementation . 26

4.3.1 Smart Contract . 26

4.4 Encrypted Database . 32

4.5 Patient Portal . 33

5 Different Views for the Stakeholders 34

5.0.1 External Person View . 34

5.0.2 Nurse View . 35

5.0.3 Physician View . 37

5.0.4 Patient View . 38

6 Discussion 40

6.1 Performance of OpenEMRx vs OpenEMR 40

6.2 Privacy and Control of EMR Data in OpenEMRx vs OpenEMR 41

6.3 Impediment in real world scenario . 41

7 Conclusions 43

8 Future Work 44

9 Appendix 45

.1 Demographic Table . 45

.2 List Table . 46

vi

List of Figures CONTENTS

.3 Prescription Table . 46

vii

List of Figures

2.1 A typical health-care system . 4

2.2 MedRec smart contracts on the blockchain and data references [4] 12

2.3 System architecture: provider adds a record for new patient [4] 13

3.1 Data classification in OpenEMR . 16

4.1 OpenEMRx . 24

4.2 OpenEMRx Design . 25

4.3 Database view in Traditional OP . 32

4.4 Database View with Encryption . 32

4.5 Patient Portal . 33

viii

Chapter 1

Introduction

An Electronic Health Record (EHR) is an electronic version of a patients medical his-

tory, that is maintained by the medical care provider over time, and may include all

of the key administrative clinical data relevant to that persons care under a particular

provider, including demographics, progress notes, problems, medications, past medical

history, immunizations,reports.[1]

The EHR system is used to create, store and maintain the patient’s medical data. There

are some EHR system available, but we need a new EHR system because patients do not

have visibility to the state of their personal health record neither they have access to their

medical record. Patient do not have any idea of who is going to access his medical data

in a hospital. Some times medical data of the patient is accessed by hospital staff, who

did not even involved in providing medical care. Patients do not have any log of who got

permission to see their data. They do not have any involvement in defining access policy

for accessing their data. So Patients has no control over their data. Many soldiers do

not take medication for post war traumas, because of privacy. Many people do not take

medical help for STD because of privacy issue.

So we believe a patient should have right to decide who can see their data and who can

not. Patients should also know the access policy to access their data. So this motivates

us to develop a EHR system, which provides privacy to patient data but also flexibility

and transparency.

We have used the open source OpenEMR EHR system. We have used the smart contract

to store the access policy for access the patient data. Use of smart contract provides the

1

Chapter 1. Introduction 2

privacy to patient data, flexibility and transparency to access permission.

2

Chapter 2

Background and Related Work

In this chapter we shall provide the current state of data management in EMR (Electronic

Medical Records) and bring out the security and privacy implications of current practices.

We shall discuss several research works that try to address the security and privacy issues

in EMR systems and build a case scenario for our approach.

A typical health-care system

Figure 2.1 depicts a typical HIS/EHR (Health Information System/Electronic Health

Records) ecosystem. HIS/EHR play a central role facilitating health related services

to the stakeholders of the system. Depending on the sophistication and design on the

HIS/EHR system, the stakeholders get benefited out of it. For example, Governments

rely on it to compile public health records that help them to make policy decisions for a

better of its population. Pharmaceutical companies can tie up with hospitals and trial pa-

tients for testing and release of their new drug inventions and their effectiveness. General

practitioners and pediatricians may act as primary precursors to potential communicable

outbreaks by reporting the data to regional/national HIS/EHR. Pharmacists may provi-

sion their stocks based on the analytics reports they can run on HIS/EHR to serve better.

Citizens may browse and choose health-care providers based on their past records that can

be reliably compiled from HIS/EHR. Local ancillary service providers dependent on this

sector can competitively and transparently serve the hospitals and in public welfare sys-

tems related to health. All such data-driven use cases do exist to some extent these days,

3

Chapter 2. Background and Related Work 4

but a comprehensive, integrated system does not exist due to security and privacy issues

related to the sensitive medical data present in the system. In this thesis we shall present

an approach to address the security and privacy issues related to such a system. Before we

present our approach, in the following, we shall highlight the potential and importance

of a data-driven health-care system in which several HIS/EHR are interconnected and

collaborate in a mutually beneficial way for all the stakeholders.

Figure 2.1: A typical health-care system

Role of reliable data in public health systems

Disease prevention is one of the primary goals of public health systems. In order to have a

visibility of any disease outbreak or overall state of public health, the data being fed to the

public health database has to be reliable. With an absence of any technological measures

to prevent a malicious local database administrator, one cannot reliably guarantee the

accuracy of the data being reported. In presence of a malicious health-care provider in

4

Chapter 2. Background and Related Work 5

the system, the honest health-care providers become averse of participating in the system

that cannot guarantee integrity of the data on which all participants and policy makers

will have to depend upon. Therefore, providing integrity and provenance to the data

that is being fed into the public health reporting system is very important.

Potential of open-data in improving health-care

Health-care systems are mainly about providing timely health services to the patients on

one hand and on the other hand managing the resources required to provide those health

services. Traditionally patients enter the health-care workflow system that are owned

by hospitals and the agents/roles identified by the hospital – that is doctors, nurses, re-

ceptionist, pharmacist, et al interact with the patients while they progress through the

workflow until they come out of the hospital. At each stage of the hospital workflow

(usually called as HIS - Hospital Information System), transactions occur between the

patient and the roles defined by the hospital. All such transactions and the data therein

gets recorded into the HIS. HIS constitutes EMR about the patient and the meta infor-

mation about the transactions, the state of resources of the hospital. All of this data in its

electronic form allows the management to improve their services and provision future ser-

vices. Furthermore, such HIS data across health-care providers, if reliably made available

to national/regional health management under open-data initiative , has the following

potential use cases:

1. national/regional health census (necessary for policy makers)

2. real-time visibility of health-care resources’ availability (necessary for their efficient

allocation)

3. performance measurement of health-care providers

4. reliable health status of patients (necessary for insurers)

5. measurement of effectiveness of drugs across large population (necessary for phar-

maceutical companies)

6. transparent, competitive participation of ancillary service providers

5

Chapter 2. Background and Related Work 6

However, when the HIS data is made available outside the administrative domain (that

is a hospital), for a greater good as indicated above, a natural apprehension about data’s

privacy comes to the fore. Therefore, it is important to provide privacy to the HIS data.

Potential of EMR portability in improving health-care

EMR (Electronic Medical Records) of patients are the most sensitive data present in HIS.

This is a PII (Personally Identifiable Information) and most of the countries have strict

laws on how PII has to be gathered, stored, processed and disposed off. If a health-

care information system assuages these PII requirements, EMR portability has following

benefits:

1. freedom to possess and present EMR to health-care provider of patient’s choice

2. well-informed decision making for medical treatment by presenting EMR for second-

opinions from far away experts

3. traceability and accountability for a medical condition due to care-providers

4. reduction in time-to-treatment for emergency cases

5. improved user experience (always ready, always filled forms to get medical help)

6. informed participation in Data Economy (for monetization or for general good as

listed earlier)

However, in absence of a single, common EMR data-format across the health-care providers,

it is difficult to achieve EMR portability across the health-providers for the patients. And

expecting a single, common EMR data-format is impractical due to various regulatory and

operational issues that persist in real world scenarios. The problem we have at hand

is: Is it feasible to provide EMR portability for patients while ensuring com-

plete visibility over patients’ EMR w.r.t. its access control while preserving

patients’ privacy?

6

Chapter 2. Background and Related Work 7

The promise of blockchain – a new type of database

When we moved away from paper-based patient record keeping to a computer-based

EHR/HIS system, all the benefits that a computer system gives over traditional paper-

based record keeping system were inherited into the EHR/HIS – to list a few of those

benefits: i) cost effective storage and transport of records, ii) real-time visibility of health-

care workflow to its management, iii) easy and frequent report compilation over health-

care data for various management and diagnostic purposes. The data is usually stored

in databases that are usually maintained by trusted system administrators. However,

visibility and access to such medical data is restricted to the people associated with

that particular health-care facility. As discussed before, the potential benefits of sharing

of the medical data beyond the administrative boundaries of the health-care facilities

has compelling benefits for patients as well as the service providers. So far, efforts to

implement such a system were marred by the challenges of data consistency, integrity,

confidentiality, provenance, and control. These are well known aspects of system design

that have been traditionally studied in distributed systems.

In 2009, Satoshi Nakamoto [7] presented the first working application (as a cryp-

tocurrency called bitcoin) of a distributed database that is owned and maintained by

several independent, uninitialized participants who are free to join and leave the process

of maintaining the distributed database. The distributed database consists of periodic

blobs of transactions, created by the participants, called as blocks and therefore the name

blockchain. The blobs are public and everybody can see the list of transactions in it

therefore it is also called as public ledger. Each participant checks the blob for correct-

ness and validity of the transactions listed in it. The transactions are about transfer of

value from one participant to another, who are identified by their public keys alone. The

algorithm to run this type of distributed ledger show who has transacted with whom at

what time is also called as blockchain. This has following inherent security properties to

its transactions:

1. integrity to the transactions

2. confidentiality to the sender and recipient of a transaction

7

Chapter 2. Background and Related Work 8

3. provable validity of a transaction

4. provenance of value with any participant

5. irrevocable nature of a transaction

6. guaranteed inclusion of a transaction

However, as described above, since the database/ledger is publicly created and maintained,

anyone participating in the system can view the transactions. Therefore, the privacy of

users hinges on maintaining secrecy of ownership of their respective public keys. Bitcoin

is a greatly successful first implementation of a distributed consensus system in which

a public ledger is maintained blob-by-blob fashion where creation of every blob/block

is consented by the whole network. Inspired by this consensus approach several other

blockchain algorithms were proposed to bring in different properties to the resulting setup

– for example, permissioned vs permission-less setup, a setup having support for general

purpose value transfer mechanism, condition based value transfer system, et al. In this

work we shall be using a type of blockchain called Ethereum [6], which we shall introduce

later in this chapter. To appreciate the properties of a blockchain based database, we

shall briefly put it in context with traditional database in the following subsection.

Comparing Traditional Database and Blockchain

Database

Traditional databases use client-server network architecture. A designated authority (Ad-

min) have the control of database. User (client) is authenticated by the designated au-

thority, then User can modify or read the data. Since this authority is responsible for

administration of the database, if the security of the authority is compromised, the data

can be altered, or even deleted.

Blockchain

Blockchain databases consist of several decentralized nodes. Each node participates in

administration: all nodes verify new additions to the blockchain, and are capable of en-

8

Chapter 2. Background and Related Work 9

tering new data into the database. Blockchain database made of blocks and each block

consist of some transaction(some block might be empty). For an addition to be made to

the blockchain, the majority of nodes must reach consensus. This consensus mechanism

guarantees the security of the network, making it difficult to tamper with. A key property

of blockchain technology, which distinguishes it from traditional database technology, is

public verifiability, which is enabled by integrity and transparency.

Summary of benefits of a blockchain

1. Immutability: In blockchain all the transactions are decentralized over all nodes,

Which makes it virtually impossible to anyone to temper with it.

2. Integrity: Since user can see all the blockchain, so then user can be sure that he

is getting unaltered data.

3. Redundancy: Every node in blockchain database have a copy of blockchain. So if

some node looses his copy of blockchain, then it can be downloaded as the node, by

re-connecting to blockchain database.

4. Transparency: Every user can verify, how the blockchain has been generated over

time.

A programmable blockchain – Ethereum

In 2013, a group of programmers led by Vitalik Buterin proposed a flavor of blockchain

called Etherem [6] that supports conditional value transfer between public keys. It pro-

vides a programming language to write such conditions called as smart-contracts that

read past transactions on the blockchain and permit or deny current transactions that

may enter into the blockchain blob. We make use of these features provided by Ethereum

and design our approach to facilitate EMR portability where patients control the access

to their respective EMRs with transaction privacy. We shall explain our approach in the

9

Chapter 2. Background and Related Work 10

following chapters. Our approach is motivated by a prior work presented in [4], which we

shall briefly present below.

MedRec: Using blockchain for Medical Data Access

and Permission Management

MedRec offers a decentralized system for managing and transferring the electronic health

record using blockchain technology, while also managing authentications,data entry, con-

fidentiality,accountability and data sharing. This system also allow patients to access his

medical information across medical care providers and patient can also transfer his pre-

vious medical record to another medical care provider. Patient leaves data across various

care provider as they move on from one care provide to other care provider. This cause

the patient to leave medical data across many care provider. But this system allow easy

access to previous data and also encourage user to maintain their own medical data and

they can review the data.

System Overview

This system uses the Ethereum blockchain and smart contract to provide decentralization

and automation of some task. Medical record are stored by medical care provider and

pointer to the medical record is stored on block chain with the hash of the medical record,

so that user can check tampering of the medical record if happen. Patients can also

share their medical data with other care providers. Patient are notified, when new data

is created and its pointer uploaded to blockchain, also patient can accept and reject this

new data. These are the three smart contract are used in the system.

1. Ethereum Blockchain: This system uses the Ethereum blockchain . The ethereum

blockchain allows two type of account

(a) Externally owned account: Theses account can store ether (Ethereum crypto

currency), One can send ether or message and receive ether or message .One

can also send transaction to the contact account.

10

Chapter 2. Background and Related Work 11

(b) Contract Account: Contact live on ethereum blockchain and execute a partic-

ular code when a transaction is sent to them.

2. This system uses three contract.

(a) Registrar Contract (RC): This is a global contract. This contract stored par-

ticipant’s identification id, their ethereum address and participant’s Summary

contract address. This contract should be maintain by certified institutions.

(b) Patient-Provider Relationship Contract (PPR): This contract manges the med-

ical records. This contact issued between medical care provider and patient

but other can also use this contract if patient allows them. This contact stores

pointer to medical data stored on medical care provider’s database. Each

pointer consist of query and permission on data, when this query executed on

medical care providers database then it return patient data. There is crypto-

graphic hash of data is also stored on this contract so that it can be checked

that data is tampered or not. This contract also stored access information of

how to access medical care provider’s database

(c) Summary Contract (SC): This patient’s summary contract connect patient to

different Patient-Provider Relationship Contract (PPR) provided by different

medical care provider, So that patient can access data from all medical provide

with whom patient had been interacted. Medical care provider’s summary

contract will have reference to patients who have shared their medical data

with him and reference to the patient whom he has severed. This contract also

contain status symbol which notified the patient when medical care provider

adds new data or update data and this contract also allow patient to accept or

reject new update. Figure 8 shows all the contract and data references.

3. System Node: Every medical care provider will have some Electronics Medical

Record(EMR) management system. This system work well with existing EMR

of medical care provider. This design include four software components both at

11

Chapter 2. Background and Related Work 12

Figure 2.2: MedRec smart contracts on the blockchain and data references [4]

medical care provider and patient’s node, these are ethereum client, EMR manager,

Backend Library, Database Gatekeeper. Figure 9 show working of the system.

(a) Ethereum Client: Ethereum client is needed for interaction with ethereum

blockchain and ethereum network. It also store a blockchain copy locally.

(b) Back-end Library: This library allows communication of EMR manger to

blockchain and check whether transaction sent to blockchain network are ac-

cepted or not.

(c) Database Gatekeeper: Database Gatekeeper allow different parties to access

database stored locally on node. It runs server to listen to queries. Database

Gatekeeper checks for digital signature of parties, who want access data and

only allows them if they are authorized. The request to access data, contain

query and address of PPR contract. Database keeper allows to run query only

if party is authorized and querying party is within permission stored on PPR

Contrac.

(d) Miners: Miner who participate in blockchain network are get incentive for

12

Chapter 2. Background and Related Work 13

verify the transaction and miner the block. Apart from these tradition miner,

allows medical research authorities mine the network and instead incentive,

medical care provider and patient release access to medical data. For this a

bounty query field is in PPR contract added. when block containing transaction

is mined it automatically append Block miner’s address in the bounty query

field as owner of bounty query of ppr contract. Then miner can query the data

from provider’s Database Keeper.

Figure 2.3: System architecture: provider adds a record for new patient [4]

How system works

Following step shows the working of MedRec system.

1. Medical care provider get the patient’s ethereum address from Register contract.

Create Patient-Provider Relationship Contract in this storing queries for data, per-

13

Chapter 2. Background and Related Work 14

missions, hash of queried data, access information as to access database, patient as

is owner of data. Then sent transaction to blockchain network for mining. Then

provider sent transaction linking Patient-Provider Relationship Contract to Sum-

mary contract of patient.

2. When Patient-Provider Relationship Contract mined or updated summary contract

get notification, patient choose to reject or accept the update.

3. Now if user want access data then, it get the query from Patient-Provider Relation-

ship Contract and get access information for connecting the medical care provider’s

database keeper. It connect to medical care provider’s node, and query the database,

then query is verified, then patient can get the data.

4. If patient want to share the data with other medical care provider then. Patient

downloads data from previous care provider. Now it can create Patient-Provider Re-

lationship Contract for new medical care provider and link to new medical provider’s

summary contract. The new medical provider can download the data from patient

database.

MedRec system allows a patient to share sensitive medical data between different

medical care provider system also provide authentication, confidentiality, accountability,

privacy using blockchain. All the access information is stored on ethereum blockchain,

which provide system confidentiality, accountability, authentication.

14

Chapter 3

OpenEMR and Ethereum

An Electronic Health Record (EHR) is an electronic version of a patients medical his-

tory, that is maintained by the provider over time, and may include all of the key

administrative clinical data relevant to that persons care under a particular provider,

including demographics, progress notes, problems, medications, past medical history,

immunizations,reports.[1] EHR have been one of the factors in transforming health care

and health management by providing electronic access to information recorded on paper

charts[8].The EHR system which is used to create, store and maintain the patient’s medi-

cal data.They are tools to manage the patient data, resource and to some extent who can

access what.

3.1 OpenEMR

OpenEMR is a medical practice management software which also supports Electronic

Medical Records (EMR) and it features fully integrated electronic medical records, prac-

tice management for a medical practice, scheduling, and electronic billing[3]. In this

project we are using the OpenEMR and implement the blockchain based access control in

it. Following is the data classification in the OpenEMR and then we discussed the access

policy and issue in it.

15

Chapter 3. OpenEMR and Ethereum 16

3.1.1 Data classification in OpenEMR

In OpenEMR, it is classifying the patient data into these categories: Demographic data,

Medical Problem, Allergies,Medications, Prescription. The demographic data is further

divided into the Who,contact, Misc,Choices, Employer,State, Guardian.

Figure 3.1: Data classification in OpenEMR

1. Demographic The demo graphic data is socio-economic data about the patient. It

can is basic data, which can a patient provide during the registration at the hospital.

(a) Who This contain the basic information for the patient identification.

(b) Contact Here the patients contract detail and emergency contract detail is

stored.

(c) Employer This contain the patient’s employer detail.

(d) State This contain information about patient’s race ethnicity,family size, in-

come etc.

16

Chapter 3. OpenEMR and Ethereum 17

(e) Guardian This contain all detail about the patient guardian.

(f) Misc If patient is dead then this contain the patient diseased data and reason.

All data other than ’WHO’ is optional to provided by patient

2. Medical Problem This contain all the data about the patient’s Medical problem

old and new. The previous medical problems can provided by the patient and

current medical problems in the hospital are recorded here.

3. Allergies This contain all the allergies of the patient. It is also recorded here

whether they are active or not.

4. Medications This contain all the medication taken by the patient.

5. Prescription This contain all prescription given to patient in the current hospital.

6. History This contain data about patient’s medical history, also about family med-

ical history and lifestyle.

3.1.2 OpenEMR Access Policy

OpenEMR has group based access policy, which is means, there are groups defined and

each group has some access privileges. whenever a staff is registered to the hospital it is

assigned a group. Whenever a staff person login into the system, he/she gets the privileges

of the group assigned to him/her.

The more common type of the groups are:

1. Physician

2. Clinician

3. Front Office

3.1.3 Issues with OpenEMR

The main issue with OpenEMR access control is that if a hospital staff has some privileges

(accessing medical data or issue prescription etc), it is for every patient in OpenEMR.

17

Chapter 3. OpenEMR and Ethereum 18

This is clearly a big privacy issue because if some hospital staff has privileged to read

patient data, then he/she can read all patient’s data even if they are only provide medical

care to few patients. Which makes it very easy for a physicians or nurses to see the data

of the patients, to whom they did not even provide the medical care. So this way, if

physician has privilege to issue prescription, then he can issue prescription to any patient

of any facility, but physician should only issue the prescription only to their patients.

This means an ENT physicians can see or issue, prescription to a patient of orthopedic

physician. So patient’s medical data is not secure.

1. Any physician or some hospital staff has some privileges then it is for all the patient

in the system. So if a physician has privileges to see the data then all physician can

see the data of all patients.

2. Patient do not any view of which staff can access the their data and what type of

data they can access.

In OpenEMR hospital staff can access the data of the patient even if the staff is not

directly involved in the care providing and patient do not have any idea who is accessing

his data. Patient also do not have any knowledge of access policy. These were the issue

we addressed in OpenEMR and using smart contract we have solved them.

3.2 Ethereum

Ethereum is decentralized platform.[6] Ethereum has a blockchain, which is maintain

by the peer to peer network. Ethereum provide a financial system and crypto currency

(Ether) like bitcoin, but it also provide platform for developing the smart contract. Smart

contract are program, which runs on blockchain.

3.2.1 Ether

Ether is a crypto currency just like bitcoin, this currency can be spent like bitcoin, it

provide all the features of bitcoin currency. This currency is driving force of network.

This is awarded ad gift to miner for doing mining.

18

Chapter 3. OpenEMR and Ethereum 19

3.2.2 Ethereum Account

There are two types of accounts in Ethereum

1. Normal or externally controlled accounts

2. Smart Contracts

Both types of accounts could hold ether balance. Transactions can be fired from both types

of accounts, though contracts only fire transactions in response to other transactions that

they have received. All the action happens on blockchain is due to externally controlled

account.

3.2.3 Ethereum Transaction

Blockchain is made of blocks and each block contain the transactions(a block can be

empty). Transactions are used to trigger the function on the smart contract or sent ether

from one account to another. A transaction has all these data in it.

1. Transaction Hash 0x35d446711e26810e8067fe4eec462005cf44b92c840e7c8106e85c91c

2994381

2. Block Hash 0xd709671a3d55f3da817d3fcf870071c386e4a4fd57315342e180139fa2cb0d9c

3. Block Number 20

4. Transaction Index 0

5. From 0x007fb6e1876788be46d3bba64ff9af61672764e0

6. To0xd94f7208406f25035ec41279401d98314d5cbfb4

7. Value 0

8. Gas Price 1

9. Gas 118392

10. Input 0xd897466500

19

Chapter 3. OpenEMR and Ethereum 20

3.2.4 Scripting Languages

Smart contract in ethereum can be written in three of languages .

1. Solidity

2. Serpant

3. Mutan

3.2.5 Smart Contracts

Smart contract are the programs that run on ethereum blockchain. After compilation and

deployment on the blockchain, they reside on specific address (160 bit). Such contracts,

will exist and be executable as long as the whole network exists, and will only disappear if

they were programmed to self destruct Smart contract can also store ether. As the smart

contract stored on blockchain then it is very hard to alter, this gives smart contract, a

power to be as real contract between number of parties, can works as a trusted real party.

A smart contract can receive ether and can also sent ether to other account. Condition and

rule of real life contract can be coded into the smart contract,and when, those condition

met, it gives some output. Every smart contract has application binary interface(ABI).

The ABI is needed to access the byte code. The ABI defines which functions you can

invoke as well as get a guarantee that the function will return data in the format you are

expecting.

3.2.6 Interacting with smart contract

Smart contract have user defined function in that so that for interaction with smart

contact, transaction are sent to smart contract from and ethereum account. For example:

A permission holding smart contract for accessing the patient’s data. Here then permission

for accessing data are stored against the doctor nurses address on the smart contract.

When a doctor sent the transaction to smart contract then he/she get the permission.

20

Chapter 3. OpenEMR and Ethereum 21

3.2.7 Smart Contract Deployment

Following steps are required to deploy a smart contract.

1. Start the Ethereum node(geth).

2. Compile and deploy the Smart contract on the Ethereum blockchain using solidity

browser.

3. Get the ABI(Application Binary Interface) and contract address form solidity browser.

4. Using Ethereum web3.js JavaScript library access the function on of the smart con-

tract.

3.2.8 Ethereum Virtual Machine

Ethereum Virtual Machine(EVM) is part of ethereum client, Ethereum client are required

to connect to the ethereum blockchain. EVM is the runtime environment for smart

contracts in Ethereum[2].

3.2.9 Gas

Every transaction in ethereum network will be have some fee associated with it. That fee

is paid in gas, it is purchased from ether. This is for stop over-consumption of resources.

Even if the transaction failed, gas is not returned to the network.

The ethereum platform provide blockchain and way to run the smart contract. These

smart contract can be use to store the data, which is not easy in classical blockchain.

These contract can be used to release certain information, when certain conditions are

met.

21

Chapter 4

OpenEMRx: Using Smart Contracts

to Manage EMR

As we want to protect the patient data privacy because there are several case happens,

where the patient medical data is accessed by the hospital staff, who were neither in-

volved in direct care providing to patient nor taken permission to access the data from

the patient. So it is clear that the current access control is not enough to stop stop these

incidents. We want to empower the patient for his medical and personal data. We want

to create a system, where the patient have some control over the policy for accessing the

patient data and have the access to permanent logs of permission to given to access the

data to hospital staff so this was clearly beach of patient data privacy. So thats why we

want patient should have control his data stored on hospital database.In our approach the

access control related to patient is stored on the smart contract. So accessing patient data

from the Health Care System required queering the smart contract stored on blockchain.

The benefit of blockchain is that patient get the immutable logs of the all the people who

have accessed his data and if patient wants then he/she can stop hospital staff to access

his/her data. In this we are modify then the OpenEMR, a open source EHR software and

now we are calling it OpenEMRx

22

Chapter 5. Design Approach and Implementation Details 23

4.1 Design

In our design, there is requirement of having ethereum account for everyone. Each role

in OpenEMRx have has smart contract(Doctor, Nurse, Receptionist, Patient). We use

the smart contract to store the permission of doctor on patient data. Every hospital staff

must be registered in their respective role smart contract. We have contracts for the four

roles:

1. Physician Smart Contract This contract registers all the Physician of the hos-

pital. The registration is done by the Admin.

2. Nurse Smart Contract This contract registers all the Nurse of the hospital. The

registration is done by the Admin.

3. Receptionist Smart Contract This contract registers all the Receptionist of the

hospital. The registration is done by the Admin.

4. Patient Smart Contract This contract registers the patient and the medical care

provider(Physician or Nurse) and the permission to access the patient data.

The Admin, Physician, Nurse, Receptionist added into their respective contract. After

this if, any hospital staff, who want to access the data of a patient must be registered

with patient on patient’s smart contract along with the access policy must be stored on

the smart contract under which they are going to access the data. Once the hospital staff

registered on the blockchain, then for accessing the data, first a transaction is sent to their

respective role contract if comes yes then the request is sent the patient’s contract where

the permission are stored and according to those permission the access to patient data is

granted.

23

Chapter 5. Design Approach and Implementation Details 24

Figure 4.1: OpenEMRx

4.2 Our Default Policy

We have defined the access policy for the accessing of the patient data and it work on top

of the OpenEMR’s group based access control. These access policy are stored on smart

contract, which is on blockchain. This theoretically it allow to have a custom policy for

every patient in the hospital and gives control of some part of policy to the patient. This

policy is saved on the blockchain it is always available.

4.2.1 Physician’s access Policy

First of all the physician has to be registered with the patient on Patient’s smart con-

tract, to access it data otherwise it will not allow any type of access to patient data.The

registration of physician with patient on patient’s smart contract indicate that physician

is medical care provider to patient. As the physician is the medical care provider to the

patient it can access all the patient data. A physician can read, edit the Demographic,

24

Chapter 5. Design Approach and Implementation Details 25

Medical Problem, Allergies,Medications data and also can adds the prescription to the

patient.

4.2.2 Nurse’s access Policy

For the Nurse the to be access the data of the patient it has to be registered with patient

otherwise nurse will not be allowed to access the data of the patient. Nurse is allowed to

view the data demographic but not contact and guardian data. Nurse is also allowed to

read the Medical Problem, Allergies,Medications data of the patient and it can also see

the prescription data but can not add a prescription data.

Figure 4.2: OpenEMRx Design

25

Chapter 5. Design Approach and Implementation Details 26

4.2.3 Database Encryption

All the patient data is stored on openEMR database and database administrator can see

this data. Physician can also export this data. So protection from this data should be

encrypted in the database. The patient’s data is encrypted with a secret key and this

secret is stored on the database itself. Then this secret key is encrypted with the patient’s

public key. Whenever any hospital staff want to access this data they have to get the

permission from the blockchain, then openEMR sent the encrypted symmetric key to

the patient from and receive a decrypted symmetric key form patient. With decrypted,

hospital staff able to add and read old patient data. This decrypted symmetric key is not

stored anywhere and nobody is allowed to see this. We are able to encrypt the medication,

medical problem, allergies and prescription data.

4.3 Implementation

In this implementation first is requires a ethereum blockchain. Then the smart contract

of different staff are deployed on the blockchain, then the different staff are registered on

that smart contract. Whenever the patient come it is registered to patient along with

medical care provider and access policy.

4.3.1 Smart Contract

Doctors’ Contract

This is pseudo code smart contract of doctor. It has address of all the doctors of a hos-

pital. This smart contract have function to add or remove doctor and it also function to

check if doctor is registered on this smart contract or not. This is pseudo code of Doctors

Contract

Doctors Contract

contract doctor

BeginContract

declare array doctor_array[];

26

Chapter 5. Design Approach and Implementation Details 27

function add_doctor

BeginFunction

Pass In: Doctor_address, Department

doctor_array[doctor_address]=speciality;

Pass Out: nothing

EndFunction

function remove_doctor

BeginFunction

Pass In:doctor_address

delete doctor_array[doctor_address];

Pass Out: nothing

EndFunction

function is_doctor_exist

Pass In:doctor_address

BeginFunction

if doctor_address exits in doctor_array[doctor_address] then:

Pass Out: true;

else:

Pass Out: false;

EndFunction

EndContract

27

Chapter 5. Design Approach and Implementation Details 28

Nurse’s Contract

Here we describe the Nurse’s Contract. It has address of all the Nurses of a hospital. This

smart contract have function to add or remove Nurse and it also function to check if a

Nurse is registered on this smart contract or not.This is pseudo code of nurse contract

Nurse Contract

contract nurse

BeginContrcat

declare Array nurse_array[];

function add_nurse

BeginFunction

Pass In: nurse_address, Department

nurse_array[doctor_address]=speciality;

Pass Out: nothing

EndFunction

function remove_nurse

BeginFunction

Pass In: nurse_address

delete nurse_array[nurse_address];

Pass Out: nothing

EndFunction

function is_nurse_exist

BeginFunction

Pass In:nurse_address

if nurse_address exits in nurse_array then:

Pass Out: true;

else:

Pass Out: false;

28

Chapter 5. Design Approach and Implementation Details 29

EndFunction

EndContract

Receptionist’s Contract

Here we describe the Receptionist’s Contract. It has address of all the Receptionists of a

hospital. This smart contract have function to add or remove Receptionists and it also

function to check if a Receptionist is registered on this smart contract or not. This is

pseudo code of receptionist Contract.

Receptionist Contract

contract receptionist

BeginContract

declare Array receptionist[]

function add_receptionist

BeginFunction

Pass In: receptionist_address

nurse_array[doctor_address]=1;

Pass Out: nothing

EndFunction

function remove_receptionist

BeginFunction

Pass In: receptionist_address

delete receptionist_array[receptionist_address];

Pass Out: nothing

EndFunction

29

Chapter 5. Design Approach and Implementation Details 30

function is_receptionist_exist

BeginFunction

Pass In:receptionist_address

if receptionist_address exits in receptionist_array then:

Pass Out: true;

else:

Pass Out: false;

EndFunction

EndContract

Patient’s Contract

The Patients contract is for the every patient in the hospital. If patient is taking medical

care from providers(Physician and Nurse). It stores the policies to access to patient for

care providers. For each care provider the access policies or permissions are stored here on

this contract. Any staff of the hospital access the medical data of any patient, then that

staff’s permission are checked on this contract. This is pseudo code of Patient contract.

Patient Contract

contract patient

BeginContrcat

declare two Di-mention array patient_permission[][]

function Give_permission_to_doctor

BeginFunction

Pass In: patient_address,doctor_address,permission

patient_permission[patient_address][doctor_address]=permission;

Pass Out: nothing

EndFunction

30

Chapter 5. Design Approach and Implementation Details 31

function Give_permission_to_nurse

BeginFunction

Pass In: patient_address,nurse_address,permission

patient_permission[patient_address][nurse_address]=permission;

Pass Out: nothing

EndFunction

function remove_permission_of_doctor

BeginFunction

Pass In: patient_address,doctor_address

delete patient_permission[patient_address][doctor_address]

Pass Out: nothing

EndFunction

function remove_permission_of_nurse

BeginFunction

Pass In: patient_address,nurse_address

delete patient_permission[patient_address][nurse_address]

Pass Out: nothing

EndFunction

function get_permission_of_doctor

BeginFunction

Pass In: patient_address,doctor_address

Pass Out: patient_permission[patient_address][doctor_address]

EndFunction

function get_permission_of_nurse

BeginFunction

Pass In: patient_address,nurse_address

Pass Out: patient_permission[patient_address][nurse_address]

31

Chapter 5. Design Approach and Implementation Details 32

EndFunction

EndContract

4.4 Encrypted Database

We are encrypting the database of the OpenEMRx, with this encryption, if someone has

access to database say database administrator, will not be able see the patient medical

data. We have encrypted the patient data with a patient specific secret key and this secret

key is encrypted with public key of the patient. So whenever the hospital staff requests

the patient data and it passes the blockchain permission, then the OpenEMRx sent the

encrypted secret key to patient and patient return the decrypted secret to OpenEMRx,

with this it return the data to requesting hospital staff. When new data is added then

OpenEMRx encrypts the data then added to database. With the encrypted database

even database administrator can’t see the patient data. Here is figure showing view of the

database of database administrator.

Figure 4.3: Database view in Traditional OP

Figure 4.4: Database View with Encryption

32

Chapter 5. Design Approach and Implementation Details 33

4.5 Patient Portal

OpenEMR has a patient portal in which a patient can login and see their medical data. We

have modified to patient portal to show, which hospital staff has given permission to access

the patient data. Patient can also see, which hospital staff can read data data and which

medical staff can write the data, also if patient want he/she can change the permission

given to hospital staff or can completely remove the hospital staff from accessing the

his/her data.

Figure 4.5: Patient Portal

33

Chapter 5

Different Views for the Stakeholders

As the blockchain database is available to every node in the ethereum network. This

create the a single same blockchain, which is open to everyone and this blockchain can be

read block by block by anyone.One can know how the blockchain is generated overtime.

So to creating different views of blockchain for the different stack holders, must encrypt

the data sending it to the blockchain.

We do not want to show people the ethereum address of the patient with the doctor in

a transaction.So we created different views of the blockchain. So this we encrypting the

patient’s address with the secret key (The transaction input data) which is know only to

openEMRx or the patient. So If some one goes block by block to read the transaction and

able to read almost the partially decoded data, they will never know the the full decoded

data.

5.0.1 External Person View

Blockchain is made of blocks and each block contain the transactions. If a person goes to

blockchain and see the transaction by going block by block, he will see these transaction.

This is the way he sees this a transactions. For example: This transaction is about

permission given to doctor to access a patient data.

1. Transaction Hash 0x35d446711e26810e8067fe4eec462005cf44b92c840e7c8106e85c91c

2994381

2. Block Hash 0xd709671a3d55f3da817d3fcf870071c386e4a4fd57315342e180139fa2cb0d9c

34

Chapter 7. Different Views for the stack holders 35

3. Block Number 20

4. Transaction Index 0

5. From 0x007fb6e1876788be46d3bba64ff9af61672764e0

6. To0xd94f7208406f25035ec41279401d98314d5cbfb4

7. Value 0

8. Gas Price 1

9. Gas 118392

10. Input 0xd897466500

00600000000000000000000000002e2409db204425686226293fe0c0256042092ddc0000000

00e00000000000000000000

00058553246736447566b583138532f3435

677268497248614d62684d752b336c694e77654d4f754333744c3141527572456455464f2f6

74b41424d543859346f336178644843586c6955626a586b6d306b505a4b554c4d513d3d0000

004

72a64656d6f20317c7720317c6320317c636820317c6520317c6d20317c6720317c2a6c6973

7420317c6d7020317c6d656420317c616c6c20317c6920317c2a707265736320317c0000000

000

5.0.2 Nurse View

As nurse part of the OpenEMRx, it view little more the an external person. Nurse will

see up to partially decoded input of transaction(as this transaction is not meant for the

nurse). Nurse will get to know that it is the transaction of ’patient giving permission to a

doctor’. But she can not know the public key of the patient because the patient’s public

key is encrypted with the secret key which is only know to patient and OpenEMRx. If

this was the transaction for giving permission to him then, Nurse will be seeing the fully

decoded Input.

35

Chapter 7. Different Views for the stack holders 36

1. Transaction Hash 0x35d446711e26810e8067fe4eec462005cf44b92c840e7c8106e85c91

c2994381

2. Block Hash 0xd709671a3d55f3da817d3fcf870071c386e4a4fd57315342e180139fa2cb0d9c

3. Block Number 20

4. Transaction Index 0

5. From 0x007fb6e1876788be46d3bba64ff9af61672764e0

6. To 0xd94f7208406f25035ec41279401d98314d5cbfb4

7. Value 0

8. Gas Price 1

9. Gas 118392

10. Input 0xd897466500

00600000000000000000000000002e2409db204425686226293fe0c0256042092ddc0000000

00e00000000000000000000

00058553246736447566b583138532f3435

677268497248614d62684d752b336c694e77654d4f754333744c3141527572456455464f2f6

74b41424d543859346f336178644843586c6955626a586b6d306b505a4b554c4d513d3d0000

004

72a64656d6f20317c7720317c6320317c636820317c6520317c6d20317c6720317c2a6c6973

7420317c6d7020317c6d656420317c616c6c20317c6920317c2a707265736320317c0000000

000

11. Partially Decode Input: give permission to doctor

string patient address:

U2FsdGVkX18S/45grhIrHaMbhMu+3liNweMOuC3

tL1ARurEdUFO/gKABMT8Y4o3axdHCXliUbjXkm0kPZKULMQ==

address doctor address: 0x2e2409db204425686226293fE0C0256042092DdC

permission: ∗demo1|w1|c1|ch1|e1|m1|g1| ∗ list1|mp1|med1|all1|i1| ∗ presc1

36

Chapter 7. Different Views for the stack holders 37

5.0.3 Physician View

Suppose this physician is the physician which is providing the medical care for the patient

involved in this transaction. Then the physician can see the full decoded input data.

which involves the patient public key, permissions and the physician address. If this

transaction does involve the physician then, it will also see only partially decoded data.

This transaction include the physician.

1. Transaction Hash 0x35d446711e26810e8067fe4eec462005cf44b92c840e7c8106e85c91

c2994381

2. Block Hash 0xd709671a3d55f3da817d3fcf870071c386e4a4fd57315342e180139fa2cb0d9c

3. Block Number 20

4. Transaction Index 0

5. From 0x007fb6e1876788be46d3bba64ff9af61672764e0

6. To 0xd94f7208406f25035ec41279401d98314d5cbfb4

7. Value 0

8. Gas Price 1

9. Gas 118392

10. Input 0xd897466500

00600000000000000000000000002e2409db204425686226293fe0c0256042092ddc0000000

00e00000000000000000000

00058553246736447566b583138532f3435

677268497248614d62684d752b336c694e77654d4f754333744c3141527572456455464f2f6

74b41424d543859346f336178644843586c6955626a586b6d306b505a4b554c4d513d3d0000

004

72a64656d6f20317c7720317c6320317c636820317c6520317c6d20317c6720317c2a6c6973

7420317c6d7020317c6d656420317c616c6c20317c6920317c2a707265736320317c0000000

000

37

Chapter 7. Different Views for the stack holders 38

11. Partially Decode Input: give permission to doctor

string patient address:

U2FsdGVkX18S/45grhIrHaMbhMu+3liNweMOuC3

tL1ARurEdUFO/gKABMT8Y4o3axdHCXliUbjXkm0kPZKULMQ==

address doctor address: 0x2e2409db204425686226293fE0C0256042092DdC

permission: ∗demo1|w1|c1|ch1|e1|m1|g1| ∗ list1|mp1|med1|all1|i1| ∗ presc1

12. Fully Decoded output give permission to doctor

string patient address: 0xca35b7d915458ef540ade6068dfe2f44e8fa733c

address doctor address: 0x2e2409db204425686226293fE0C0256042092DdC

permission: ∗demo1|w1|c1|ch1|e1|m1|g1| ∗ list1|mp1|med1|all1|i1| ∗ presc1

5.0.4 Patient View

Patient will see the full decoded input if the transaction involved this patient otherwise

this will be external person view to patient.

1. Transaction Hash 0x35d446711e26810e8067fe4eec462005cf44b92c840e7c8106e85c91

c2994381

2. Block Hash 0xd709671a3d55f3da817d3fcf870071c386e4a4fd57315342e180139fa2cb0d9c

3. Block Number 20

4. Transaction Index 0

5. From 0x007fb6e1876788be46d3bba64ff9af61672764e0

6. To 0xd94f7208406f25035ec41279401d98314d5cbfb4

7. Value 0

8. Gas Price 1

9. Gas 118392

38

Chapter 7. Different Views for the stack holders 39

10. Input 0xd897466500

00600000000000000000000000002e2409db204425686226293fe0c0256042092ddc0000000

00e00000000000000000000

00058553246736447566b583138532f3435

677268497248614d62684d752b336c694e77654d4f754333744c3141527572456455464f2f6

74b41424d543859346f336178644843586c6955626a586b6d306b505a4b554c4d513d3d0000

004

72a64656d6f20317c7720317c6320317c636820317c6520317c6d20317c6720317c2a6c6973

7420317c6d7020317c6d656420317c616c6c20317c6920317c2a707265736320317c0000000

000

11. Partially Decode Input give permission to doctor

string patient address:

U2FsdGVkX18S/45grhIrHaMbhMu+3liNweMOuC3

tL1ARurEdUFO/gKABMT8Y4o3axdHCXliUbjXkm0kPZKULMQ==

address doctor address: 0x2e2409db204425686226293fE0C0256042092DdC

permission: ∗demo1|w1|c1|ch1|e1|m1|g1| ∗ list1|mp1|med1|all1|i1| ∗ presc1

12. Fully Decoded output give permission to doctor

string patient address: 0xca35b7d915458ef540ade6068dfe2f44e8fa733c

address doctor address: 0x2e2409db204425686226293fE0C0256042092DdC

permission: ∗demo1|w1|c1|ch1|e1|m1|g1| ∗ list1|mp1|med1|all1|i1| ∗ presc1

If someone goes block by block to read the blockchain they will get the external person

view. If someone from hospital staff try or ex-patient of the hospital want to decode the

input data then they might get up to the partial decode input but never will be able to

get full decoded data. So nobody from reading blockchain can find out, which patient is

taking the care from which provider.

39

Chapter 6

Discussion

In this chapter we have put in perspective our work against the current version of Open-

EMR, in terms of privacy of patient’s health care data (EMR) and its access control.

we have presented our findings about the computational and temporal overheads of our

approach over the classical OpenEMR deployment. We have also discuss the practical

impediments of our approach in real-world scenario.

6.1 Performance of OpenEMRx vs OpenEMR

OpenEMRx integrates the classical open-source version of OpenEMR with Ethereum

blockchain to incorporate patient’s EMR access control and transaction privacy. However,

these important security and privacy feature have a computational and temporal cost on

operations of OpenEMRx. We present these costs, as response time taken for a query to

be executed, for a select number of operations in the below table. For direct read query

the for data from database take 0.55 seconds for 1000 queries and blockchain take around

8.5 seconds for 1000 read queries. The write queries take more time 1 write query can

take up to 0.2 seconds to 0.3 seconds MYSQL database and write a queries(Transaction)

take upto 0.3 minutes to 2 minutes on the blockchain.

.

40

Chapter 7. Different Views for the stack holders 41

Operation Response Time:OpenEMR Response
Time:OpenEMRx

New Patient Registration 1 second 1.5 seconds
Getting Patient Data 1 second 5 seconds to few minutes
Giving Permission to Doc-
tor or Nurse to access the
data

1 second up to 1.5 minute

Registering new Staff 1 second up to 1.5 minute

Table 6.1: Response time of operation in OpenEMR and OpenEMRx

6.2 Privacy and Control of EMR Data in OpenEMRx

vs OpenEMR

1. OpenEMR have group based access control in which a group has certain privileges

and each hospital staff is assigned to a group. The physician group has privilege

to give prescription then the physician can give prescription to all the patients. In

OpenEMRx patient has full knowledge of who can access their data and what kind

of data, a hospital staff can read or write.

2. In OpenEMR, all the data of the patients is in the plain text, stored in OpenEMR

database and that data can be exported by the physician. A physician can export

the data of patients even without their consent. The data stored in OpenEMRx

database is encrypted. So if the a physician with permission want to access data,

the OpenEMRx request the key for the data from patient and after getting the key,

unencrypted data is given to physician or other hospital staff. Here the patient’s

consent is must for their data accessing.

6.3 Impediment in real world scenario

The main problem can in real world scenario.

1. Ethereum account Every patient may not have the ethereum account and without

that, their permission can not be stored on the blockchain.

41

Chapter 7. Different Views for the stack holders 42

2. Slow Patient A patient might provide decrypted key slowly. This will lead to long

operation time.

42

Chapter 7

Conclusions

As our goal was to make EHR system which provide privacy for the patient data and also

at provide transparency and flexibility in access policy for accessing the patient. As the

only those hospital staff, who are involved in patient care, only those will able access the

patient data. The change in the access policy can be made very easily, which makes our

access policy flexible and at the same time the access policy is visible to patient and care

providers, this makes access policy transparent. So we achieved our goal of making an

EHR system which provide privacy, transparency and flexibility.

43

Chapter 8

Future Work

This openEMRx provides the privacy to patient data, flexibility and transparency to

access policy. The transfer of key from the patient to OpenEMRx for the decrypted data

can be made by an mobile application. This system can be much more benefit for patient,

if it can have the MedRec capability. With the MedRec capabilities the patient can share

the securely to another medical care provider into a different hospital.

44

Chapter 9

Appendix

.1 Demographic Table

This table stored the basic patient detail. These are the columns of that table.

id, title, language, financial, fname, lname, mname, DOB, street, postalcode, city,

state, countrycode, driverslicense, ss, occupation, phonehome, phonebiz, phonecontact,

phonecell, pharmacyid, status, contactrelationship, date, sex, referrer, referrerID, providerID,

refproviderID, email, emaildirect, ethnoracial, race, ethnicity, religion, interpretter, mi-

grantseasonal, familysize, monthlyincome, billingnote, homeless, financialreview, pubpid,

pid, genericname1, genericval1, genericname2, genericval2, hipaamail, hipaavoice, hipaan-

otice, hipaamessage, hipaaallowsms, hipaaallowemail, squad, fitness, referralsource, user-

text1, usertext2, usertext3, usertext4, usertext5, usertext6, usertext7, usertext8, userlist1,

userlist2, userlist3, userlist4, userlist5, userlist6, userlist7, pricelevel, regdate, contrastart,

completedad, adreviewed, vfc, mothersname, guardiansname, allowimmreguse, allowim-

minfoshare, allowhealthinfoex, allowpatientportal, deceaseddate, deceasedreason, soapim-

portstatus, cmsportallogin, careteam, county, industry, immregstatus, immregstateffdate,

publicitycode, publcodeeffdate, protectindicator, protindieffdate, guardianrelationship, guardian-

sex, guardianaddress, guardiancity, guardianstate, guardianpostalcode, guardiancountry,

guardianphone, guardianworkphone, guardianemail

45

Chapter 11. Appendix 46

.2 List Table

This table holds the patient’s medical problem, allergies and medications. These are the

columns of that table.

id date type title begdate enddate returndate occurance classification referredby ex-

trainfo diagnosis activity comments pid groupname destination reinjury id injury part

injury type celinjury gradel1 external allergyid erx source erx uploaded modifydate sever-

ity al external id

.3 Prescription Table

This table holds the prescription given by the hospital physicians. These are the columns

of that table.

id, patient id, filled by id, pharmacy id, date added, date modified, provider id, en-

counter, start date, drug, drug id, rxnorm drugcode, form, dosage, quantity, size, unit,

route, interval, substitute, refills, per refill, filled date, medication, note, active, datetime,

user, site, prescriptionguid, erx source, erx uploaded, drug info erx, external id, end date,

indication, prn

46

Bibliography

[1] Electronic health record.

[2] Ethereum virtual machine.

[3] Openemr.

[4] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: Using blockchain for med-

ical data access and permission management. In 2016 2nd International Conference

on Open and Big Data (OBD), pages 25–30, Aug 2016.

[5] Simlindile Abongile Bantom, Retha de la Harpe, and Nkqubela Ruxwana. Accessibility

to patients’ own health information: A case in rural eastern cape, south africa. In

Proceedings of the Annual Conference of the South African Institute of Computer

Scientists and Information Technologists, SAICSIT ’16, pages 4:1–4:9. ACM, 2016.

[6] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized ap-

plication platform. 2013.

[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,”

http://bitcoin.org/bitcoin.pdf.

[8] Venet Osmani, Stefano Forti, Oscar Mayora, and Diego Conforti. Challenges and op-

portunities in evolving trec personal health record platform. In Proceedings of the 11th

EAI International Conference on Pervasive Computing Technologies for Healthcare,

PervasiveHealth ’17, pages 288–291, New York, NY, USA, 2017. ACM.

47

