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Abstract

Security and integrity have been a rising concern in today’s technology savvy
world as storing and processing electronic data are in high demand. The clas-
sical PostgreSQ)L has various vulnerabilities that can easily be exploited by
attackers. SQLInjection attacks have been on top-10 attacks of OWASP
consistently since past decade. These attacks exploit the various vulnera-
bilities of a database. The Discretionary Access Control model used in a
database system is insufficient to prevent such breaches as they allow us to
apply security at the granularity level of a relation or an attribute. Hence,
a need for much more secure database system arises which is highly secure
as well as scalable to accommodate a large number of users. In this dis-
sertation, we provide a design and implementation of SecPosgreS(QL which
extends the existing system, classical PostgreSQL for flow-secure multilevel
database. SecPostgreSQL on top of all the features available in the classi-
cal PostgreS(Q)L has incorporated a decentralized information flow control for
protecting data from privacy breach. The semantics of complex SQL queries
like, views, transactions, etc. has been transformed to incorporate infor-
mation flow rules. SecPostgreSQL integrates a novel purpose-based policy
model called Readers Writers Flow Model [5], in order to realize information
flow control in databases. One of the important characteristic features of our
model is the robust sanitization and declassification which is defined carefully
to inhibit information flow leakage.

SecPostgreSQL looks database applications from two different views: one
having single subject performing all SQL operations on the database on be-
half of other users, which is addressed by tuple level labeling approach; while
the other having a proper set of subjects and objects, which is addressed
by Readers Writers Flow Model. The performance overhead has been com-
pared with classical PostgreSQL for all basic SQL operations and the results
obtained are satisfactory.
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Chapter 1

Introduction

Traditional database systems are used to store data efficiently and fetch
them when required. They are optimized for storage, fast retrieval, and
access. The primary concern they address is the performance of the database
system. Many organizations use databases for various applications. Some of
them are storing user credentials, which may be encrypted, storing a medical
history of a patient in a medical database, storing purchase history and billing
information in a supermarket database and so on. These database systems do
what they are supposed to do in an optimized and efficient manner. But all of
them lack one common thing: security. Database systems do not incorporate
stringent security checks when the data is being accessed. More specifically,
the checks can be done only at the table level, but not at the finer level
such as an attribute, or even a tuple. Traditional database systems have this
shortcoming. To overcome this drawback Multi-Level Secure database [19],
more generally MLS database can be used. MLS databases go beyond the
traditional DAC policies adopted by the classical database systems. They
enforce information flow control in the system at such a finer granularity
such as an attribute or a tuple. Such enforcement is nearly impossible or
very difficult to incorporate. The reason being that they were designed for
efficiency, and not for information flow control. Hence a need arises for an
MLS-enabled secure database system.

SecPostgreSQL, an MLS database system, built upon the classical Post-
greSQL, overcomes such shortcomings of the traditional database system. It
enforces the security checks at the tuple level and controls the information
flow control in the system using a novel decentralized information flow con-
trol model RWFM. We will discuss more about RWFEFM in the later sections.
Effectiveness of SecPostgreSQ)L has been demonstrated using various case
studies and examples. Performance evaluation of SecPostgreSQL in compar-
ison to classical PostgreSQL reveals that there is only a performance overhead



of approximately 15% for various queries such as Select, Insert, Delete, Up-
date etc. The overhead has been measured using the benchmarking tool
TPC-H [15].

The related work is done in the similar field, Decentralized Information
Flow for Databases [2], provides support for Multi-Level Secure databases
by assigning security classes to all the subjects and objects in the system
and restricting all the invalid information flows in the system. Information
flow has been tracked at two levels: database level and application level.
Database accepts connection from only those applications which also imple-
ments information flow control. The paper has transformed application logic
of Python and PHP to integrate information flow rules. Two popular appli-
cations, CarTel [17] and HotCRP [16], has been modified to incorporate the
changes and performance have been evaluated using TPC-H benchmark. The
semantics of all basic SQL operations, such as SELECT, INSERT, DELETE,
UPDATE has been modified and new SQL constructs are also introduced to
implement concepts like declassification and sanitization. The drawback with
this approach is that the declassification rule is not so robust as it can make
information available to anyone. Also, in the case of IFDB, an application
also has to work in a trusted environment which keeps track of information
flow.

The above-mentioned shortcomings have been addressed by our approach,
in which PostgreSQ)L handles applications using two different security poli-
cies, depending on the role of subjects available in the system. If a system
has subjects that operate on behalf of other users, which implies that the
system does not have a proper set of subjects defined, then Tuple-Level
Labelling approach is used and if a set of subjects is defined in the system,
then Readers Writers Flow Model (RWFM) [5] is used. Both of them
labels data but at two different levels. Tuple level assigns labels to entire
tuples; while RWFM assigns labels to each of the data cells. Both of them
have their own advantages and disadvantages.

This report is arranged in the following fashion. Chapter 2 gives the
reader an insight into the required background knowledge for better under-
standing of this dissertation. It describes the various security models in-
cluding RWFM and describes the working of PostgreSQL in detail. Chapter
3 provides the implementation details as to how SecPostgreSQL has been
implemented. Modification done to the classical PostgreSQL for each query
as well as the syntax and semantics of the newly introduced queries are de-
scribed in this section. It also answers the why of this dissertation through
general theoretical flaws in the existing database systems and compelling
examples. Chapter 4 describes the RWFM based approach for securing in-
formation flow control in PostgreSQL using HotCRP as an example. Chapter
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5 gives the performance analysis of SecPostgreSQL in comparison to Post-
greSQL and species the measured performance overhead in various scenarios.
Chapter 6 and Chapter 7 describe the conclusion of this dissertation and
future directions.



Chapter 2
Background and Related Work

This chapter aims to give the reader a brief background required to under-
stand the purpose, goal, and achievement of this thesis. First, we introduce
the reader to various multilevel security models, followed by a detailed de-
scription of PostgreSQL, its architecture, and its relevant applications.

2.1 Classical Security Models

There are a plethora of security models available, but the discussion will be
limited to a main few which need to be understood to understand various
nuances of this thesis. A few of them are:

2.1.1 Bell-LaPadula Model

Bell-LaPadula model [9] was developed in the 1970s for securing information
in the Military domain. It restricts the information flow in the system. This
is achieved by assigning levels to various subjects and objects. Subjects, i.e.,
the users have clearance level whereas objects, i.e. mainly files, have secu-
rity classifications. Now, based on these clearance levels and classification,
accesses are allowed or denied. BLP model follows state transition to denote
the security of a system at any point of time. A system makes a transition
through several states when subjects perform operations such as read, write,
etc. For each transition ¢, it is secure only if it follows the following three
properties at any given point of time:

e Simple security condition: This property enforces the “no read up”
constraint of BLP. It states that a subject which is at a lower clearance
level than that of a subject cannot read an object which has a higher
classification level than the subject. Thus a subject can read an object
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only if the following constraint is satisfied: L(s) > L(o) Where L(s)
is the clearance level of the subject s whereas L(0) is the classification
of an object 0. The subject s can read that object o only if it has a
higher clearance level than the object.

e Star property: This property enforces the “no write down” con-
straint. It states that a subject cannot write to an object which has
classification level lower than the subject’s clearance level. In other
words, a subject can write only to objects which are at a level at least
as that of the subject. L(s) < L(o)

e Discretionary Access Control: This property states that every ac-
cess should also be constrained by the discretionary access control pol-
icy of the system. Just because the access is allowed by the BLP doesn’t
mean that the access should be granted if it violates the DAC policy
of the system and vice-versa.

2.1.2 Biba Integrity Model

Biba-integrity model [9], in contrast to Bell-LaPadula model, deals with the
integrity of the system, rather than its confidentiality. This is very useful
in scenarios where the integrity of the data, i.e., preventing data corruption,
is much more important than preventing leakage of data. Same as in BLP
model, subjects have clearance level and objects have classification level.
Based on their levels, subjects are granted access to objects. Biba also follows
state transition framework for maintaining system integrity. Each state at
any point of time should satisfy all the following properties:

1. Simple Security Property: A subject s cannot write to an object if
level of the object dominates the level of the subject. That is: L(s) >
L(0), should be satisfied so that a subject can write to an object.

2. The Star property: A subject s cannot read an object o if the level
of the subject dominates the level of the object. That is: L(o) > L(s),
should be satisfied so that a subject can read an object.

2.1.3 Denning’s Information Flow Model

Denning et al in [1], proposes an information control model using lattice-
based approach. It guarantees information flow control in the system using
axioms that the system must follow. It defines a set o security classes SC,
and the permissible flow controls using the can-flow operator —. A class



combining operator & defines the Least Upper Bound (LUB) of two security

classes. Let N be the set of all objects in a system. The objects can be

file or variables or other information containers. And let, P be the set of

processes in the system. These processes are active entities which cause the

information flow from one object to another, or to another process. Together,

these constitute an Information Flow Model, formally denoted as a five tuple,
<N, P, SC, —, &>

whose definition of each symbol was described above.

{A,B, C}
{AB} {B.C}
{A} {B} {c}
{}

Figure 2.1: Lattice Hierarchy in Denning’s Model. A, B, C are security
classes

Information flow control in a system can be controlled by specifying what
a subject at a particular level in the lattice can read or can not read. Each
level in the lattice denotes a Security Class. A security level A is said to
dominate a security level B, i.e., A>B, iff, B—+A, meaning information can
flow from B to A.

In each of the above-described classical security model, the definition of
a level in a lattice is not clearly and formally defined. Hence, RWFM model
has been used for implementation of SecPostgreSQL. We will now discuss
about the RWFM model in the next section.

2.1.4 The SeaView Security Model

This model is used for databases that contain data belonging to different
classes of sensitivities and not all the users have the highest clearance to
access the entire dataset. It follows lattice model with the nodes contain-
ing access classes, which further contains security level (for instance, TOP



SECRET, SECRET, CONFIDENTIAL, UNCLASSIFIED etc.), and cate-
gories. The security levels follow totally ordered relation; while categories
follow partially ordered relation.

The SeaView Security Model follows Mandatory Access Control model,
which prevents information leakage from covert channels. Within the lattice,
no information can flow from a higher level of security to lower level and
also, information can only be written to lower levels. The concept of refer-
ence monitor is introduced, which actually guards all access to the objects
by subjects. All the access requests for objects pass through the reference
monitor, which checks whether it conforms to the information flow rules or
not. All the security-critical operations must pass through reference monitor.

The design approach of SeaView model implements multilevel relation
using views at different security levels. Subjects interact with the relation
using views, which fetches data from a single level relation stored physically
in a file. This transition from single level to multi-level relation is transparent
to users. Reference monitor lies just above the single level relation. Since for
all the requests data is ultimately fetched from single level relation, which
passes through reference monitor in order to perform label comparison to
determine if access should be granted or not.

2.2 Models For Database Security

Several works have been done in this field. Here we discuss a few prominent
works briefly. Comparison of their work with SecPostgreSQL is also discussed
in the following sections.

2.2.1 Information Flow in Databases

[2] The classical PostgreSQL does not keep track of information propagation
which might lead to information leakages and even if the data is protected
by access control, it can be inferred by performing multiple SQL queries on
dataset. GRANT and REVOKE statement controls access of data objects;
but once a user gets access to information, it can always pass on the infor-
mation to other users, which can not be prevented in the existing system.

The following are the main challenges that IFDB [2] addresses:

e [FDB uses Query by Label model, which modifies the semantics of basic
SQL queries so that they conform to information flow rules.

7



e [t also introduces new SQL constructs for declassifying views and stored
authority closures.

e For preventing transactions and constraints from revealing information,
concepts such as transaction commit labels and declassifying classes are
introduced.

Information flow has been tracked at two levels: database level and ap-
plication level. Database accepts connection from only those applications
which also implement information flow control. The paper has transformed
application logic of Python and PHP to integrate information flow rules.
Two popular applications, CarTel and HotCRP, has been modified to in-
corporate the changes and performance has been evaluated using TPC-H
benchmark. The semantics of all basic SQL operations, such as SELECT,
INSERT, DELETE, UPDATE has been modified and new SQL constructs
are also introduced to implement concepts like declassification and sanitiza-
tion.

One of the major drawbacks that IFDB faces is that it does not have a
robust declassification and sanitization feature. Any user can declassify data
to any other user. This leads to information leakage, if not done carefully.
However, in RWFM, only the influencers can be added to the readers set,
i.e., data cannot be declassified to any user. Also, application has to work in
a trusted environment which keeps track of information flow.

2.2.2 Fine Grained Access Control

The classical PostgreSQL follows Discretionary Access Control Model, i.e.
user itself defines the access control policies, using GRANT and REVOKE
statements. The drawback of this approach is that it does not provide access
at a finer level of granularity, i.e. it can only operate at a relation or an
attribute level.

The above shortcomings has been addressed by using predicated GRANT
statements. Unlike the existing GRANT statements, predicated GRANT in-
cludes WHERE clause as well so as to introduce access control at tuple level
or cell level. Also, they have introduced the notion of authorized views so
that only the authorized user gets access to that view. The syntax and se-
mantics of predicated GRANT has been changed to include qualifications,
like other SQL queries. The predicated GRANTs also provide authorization
on functions, procedures and aggregates. The authorized views can han-
dle complex queries and large number of users as well. All the users share



the same authorized view with a parameter representing user identity. Such
views are instantiated every time user tries to access it. Users can define
authorization for a user group as well.

The only drawback with the predicated GRANT is that the authorized
views has to be initiated every time a user tries to access it. This might
result in increase in access time of the view.

2.3 Shortcomings of PostgreSQL

The classical PostgreSQL does not support Mandatory Access Control model,
which implies all security policies enforced are controlled by users herself. In
PostgreSQL, the following are the ways using which privacy of users can be
ensured:

e One of the ways of dealing with privacy of data is by using GRANT
and REVOKE statements. These statements follow Discretionary Ac-
cess Control model as users themselves grants access to a relation or
a few of the attributes of a relation to other users. This is one of the
most common ways of enforcing security at table or attribute level. The
syntax for granting and revoking access to data objects is as follows:

GRANT privilege name ON object_name TO user name [WITH GRANT
OPTION];

REVOKE privilege name ON object_name FROM user_name;

e In addition to GRANT and REVOKE statements, Row level Policies
deal with preserving privacy of data at tuple level in a relation on a
per user basis. Owner of the table defines security policies which will
be abided by all users trying to access or modify that relation. This is
again following a Discretionary Access Control model where in, a user
defines the policy which returns boolean value for a particular user; the
only difference being user can do so for only those relations that are
owned by her. After defining the policy, if a user tries to access the
relation, then prior to performing any check on qualifications provided
in query, PostgreSQL first checks whether that tuple is visible to the
user or not.



2.4 RWFM: Readers Writers Flow Model

RWFM [6] model is motivated by Denning’s Information flow model. Its
novelty is purpose based privacy policy which follows lattice model to restrict
invalid information flow within the system. It recasts Denning’s information
flow model and brings a notion of implementing labels as a triplet <Quwner,
Permissible readers, Influencers>. Denning’s information flow model assigns
security classes to each of the entities in the system and controls information
propagation by restricting invalid flows. In the Denning’s model, information
can not flow from higher security level to a lower level. The existing security
models such as Biba Model, Bell La Padula Model etc. have several flaws:

e Labels are not defined properly in any of the security models with an
implementation perspective,

e Dynamic labelling has not been incorporated correctly,
e Confidentiality of data takes only readers set into account,

e Declassification rules are not robust, leading to information leak.

RWFM model realizes the purpose-based privacy policies by assigning
security labels to all subjects and objects in the system. According to this
model, the purpose of access can be captured by looking at the state of a
subject requesting access to the information. Another important aspect of
this model is to control how a subject uses the information accessed, and in
particular, to whom the subject discloses the results of processed information.

Definition:
Reader Writer flow model is defined using five tuples:

(S5,0,2° x 29,( U, N ),( D, Q))

where;
S denotes a set of subjects.
O denotes a set of objects.
Labelling function is defined as \: SU O — S x 2% x 2°
The labelling function assigns labels to all of the entities present in the system
which basically contains three components and are described below :
RWFM is denoted using a three tuple set (s,R,W)

® S: owner

e R: permissible readers
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e W: subjects who have influenced the information

Initial label of object is {s, S, 0} while subjects have the initial label {s, s, S}.
The initial label depicts the state of subjects and objects at the starting state
of the system. The initial label of the object is such as it denotes that the
object has not yet been influenced by any of the subjects in the system. The
subjects label gets modified once it starts gaining information, which will
be described in the coming sections (Read rule). The initial label positions
the subject at the lowest point in the RWFM lattice, and thus it climbs the
lattice as it starts gaining information.

Confidentiality and integrity of the entities are expressed using readers set
and writer set respectively. Readers set contains subjects that are allowed to
read information; whereas writers set contains subjects that have influenced
information so far.

2.4.1 Access Rules

e A subject s is granted read access on an object o iff,
s € R(o) A R(o) D R(s) A W(o) C W(s)
This means that the subject should be present in the reader’s list of that
object, and that the subject is at equal or higher level that the object
that it wants to read. Thus guaranteeing information confidentiality.

e A subject s can influence, that is, write to an object o iff,
s € W(o) A R(s) 2 R(o) A W(s) € W(o)
This means that the object should be allowed to influence the object
and that the subject should reside at a level equal or lower than the
object.

Lowest point in lattice is {s, S, () }, while the highest point is {s, 0, S }.
This is because the reader sets get intersected while moving up the lattice,
while union happens for writer set.

2.4.2 Information Flow Diagram

RWFM uses labelling to denote the state of the system at any point of time.
The state of the system can be inferred by the labels of the all the subjects
and objects in the system. Subjects are active entities which are responsible
for the information flow in the system. They read information from an object
and influence/write another object. Object here act as a passive entity. They
are passive because they themselves do not cause a state change in the system.
The labels of a subject change over a period of time as it goes on gaining
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information from various objects in the system, and thus have dynamic label.
Objects on the other hand have static label, unless modified by the owner of
that object. State change in RWFM happens by various events such as,

e Reading of an object by a subject
e Downgrading of an object

e (Creation of an object.

2.4.3 RWFM rules

RWFM follows the Dennings lattice model for information flow control. But
the rules are bit different than from Dennings. It is required as the lattice
should now incorporate the readers and writers also, and then define the
rules based upon them. The lattice points are defined by the set of readers
and witers and thus they play a pivotal role in the rules of RWFM.

We will now discuss the various rules defined in RWFM and give a brief
description of each.

e Read rule

Read access request to an object o with label (s1,R;,W;) is granted to
a subject s with label (sqg,Ra,Ws) iff

— s is present in readers list of that object, i.e., s € R,

— If allowed to read, this means that there has been an information
flow, thus the subject s will move up the lattice. The new updated
label of the subject will be : (s9,R; U Ro, W7 U W))

e Write rule

Write access request to an object o with label (so,R2,W5) is granted to

a subject swith label (s1,R;,W7) iff,

— s should be present in the writers/influencers list of the object,
ie,s e Wy

— The level of the object in the lattice should be at least as much
as that of the subject, meaning that the level of the object should
dominate the level of the subject. Thus, Ry O Ry A W C W,

Here, like in read, the label of the subject doesn’t change as there was
no information gained by the subject. Also since the object label is not
downgraded or created, hence object’s label also do not change.

12



e Create rule

When a subject s having label (s1,R;,W;) creates a new object, the
object label is set same as that of the subject. This denotes that the
newly created object has the same level in the lattice as that of the
subject and thus is information flow preserving.

e Downgrade rule

If a subject s with label (s1,R;,W;) requests to downgrade object o
with label (so,R2,W5) to label (s3,R3,1W3)
begin
if (s1 = s9 = s3) and (s; € Ry )and( Wi= Wy =Wj3) and (Ry =
Rl)and(Rg 2 Rg)then
if (W) =s) or (R3 - Ry C Ws) then
)\(O) = (83,R3,W3)

allow
else
deny
else deny
end

— Only the owner of the object is allowed to downgrade.
— Subject and object must be at the same level.

— Only the subjects that have influenced the object before can only
be added to the readers set.

— Ownership and writer set of object remain intact.

e Upgrade rule

If a subject s with label (s;,R;,W;) requests to upgrade object o with
label (s2,R9,W2) to label (s3,R3,W5)
begin
if (s; = s9 = s3) and (57 € Ry ) and ( Wy C W) and (W3 = (W) Us))
and (R3 Q R1 Q Rz)then

)\(O) = (83,R3;W3)

allow

1
else deny

end

13



— Subject must be in the readers set of object to be upgraded.
— Only owner of the object must be allowed to upgrade.

— Readers set of object after upgradation must be a subset of readers
set of subject.

— Ownership and writer set of object remain intact.

2.4.4 Advantages of Readers Writers Flow Model

e Security policies are enforced stringently as every data access request
always passes through the reference monitor. Even the data after pro-
cessing is assigned labels, which prevents information leakage indirectly
using covert channels.

e Information flow rules take into account the current label of the subject
which has been influenced by all the information that has been read by
the subject so far.

e Confidentiality of data takes into account both readers set and writers
set, unlike other security models.

e Labels are defined properly and are easy to understand. They also
provide a clearer view of information flow.

14



Chapter 3

SecPostgreSQL

In this chapter, first we will discuss about the motivation and the goal of this
thesis. Several convincing scenarios are illustrated to convince the reader of
the relevance of this thesis. In the further section, details about the imple-
mentation of SecPostgreSQL is given. Discussion of implementation of both
tuple-based approach as well as RWFM-based approach will be done. SQL
semantics of both the approaches will be described.

3.1 Motivation and Requirement Gathering

Privacy has become a crucial aspect in all of the modern day applications.
In this section, we shall introduce the reader to modern day complex ap-
plication scenarios and list out privacy requirements from databases of such
applications with the help of few scenarios.

Scenario 1 - Medical Data: Consider the case of a medical database in a
hospital management system. Such a database contains information about
patients, doctors, nurses, medicines, pharmacies, etc. It will contain non-
sensitive data such as name, age, etc., and sensitive data such as patient’s
medical history, their current medications, their contact details, etc. A pa-
tient’s medical information is sensitive due to many prevalent reasons like
(i) it determines the patient’s insurance premium. (ii) a hereditary con-
dition may reveal impending medical conditions of patient’s off-springs and
in turn their insurance coverage and premiums, for example, it is important
that patient’s data should be accessible to different roles of employees on
need basis. For example, a nurse should not be allowed to access informa-
tion of a patient with respect to medication etc.; whereas, the doctor may
have increased access to her patients and possibly other doctor’s patients too
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if it helps to improve health of patients in general. Consider spread of an
epidemic like swine flu etc. Doctors need more access to understand context
and learn from other patient’s response to treatments. To enforce these ac-
cess policies in traditional database systems is not an easy task. One major
reason is that they provide only table level or utmost an attribute level se-
curity policy. These do not suffice to enforce the required security policies in
required manner. Thus hindering the database design process too.

Assume a medical database of Patients containing a table of information
of all the patients who have visited or consulted the hospital. This infor-
mation should be made available selectively on a need basis, and should not
be made public. Hospitals aim to protect the privacy of patient’s informa-
tion, which they collect for treatment purposes. If a patient, John, visits
doctor, Bob, then the information of that patient should be visible only to
Bob, hospital management, and the patient. Similarly, Bob should not be
usually allowed to view details of patients of other doctors. The nurse, phar-
macist, other hospital staff should be allowed only information that they
need-to-know about these patients.

Database applications are extensively used by a large number of users
these days, which might contain data of different levels of sensitivities. All the
users are not supposed to get the same view of data if it contains information
belonging to different classes of secrecy. Multilevel secure databases play an
important role in such scenarios. However, the existing PostgreSQL does not
support multilevel databases, i.e., all the users get the same view of data if
they execute same query. There is no sensitivity level defined for information
in a database. Also, there is no fine grained authorization at the level of
data cells. The existing PostgreSQL does provide SQL authorization at the
level of tables or columns only. The queries such as GRANT/REVOKE give
permission to access specified tables/columns for a user. Also, there is no
such mechanism to keep track of information flow in the system. All of the
information as well as users are treated equally, there are no security levels
defined.

The following are a few scenarios where fine grained access control is
required, but the current systems do not provide:

e patients must be able to see their own records,

doctors can see records of their patients,

students can see their own grades,

faculty has full access to grades of courses they taught,

public can see average grades for every course.

16



There could be several engineering approaches to tackle the above men-
tioned scenarios. One of the solution is using Multi-Level Secure databases,
which categorizes all the users according to different levels of sensitivities so
that information flow can be controlled in the above scenarios.

In addition to GRANT and REVOKE statements, Row level Policies
deal with preserving privacy of data at tuple level in a relation on a per user
basis. Owner of the table defines security policies which will be abided by
all users trying to access or modify that relation. This is again following a
Discretionary Access Control model where in a user defines the policy which
returns boolean value for a particular user; the only difference being user
can do so for only those relation that are owned by it. After defining the
policy, if a user now tries to access the relation, then a check is performed
to verify if the tuple is available access or modification by that user prior to
any user defined condition or function. Usually, relations do not have row
level security feature enabled. However, it can be enabled by the owner of
the table by using the following command:

ALTER TABLE table_name ENABLE ROW LEVEL SECURITY;

Once the row level security is enabled, owner can now define policies on
per user basis, which requires an extra attribute for storing the owner of each
tuple. The policy definition requires a condition which needs to be satisfied
in order to make a tuple visible to a user. The syntax for defining the defi-
nition is as follows:

CREATE POLICY policy name ON table name TO user_role
USING (user_name = current_user);

A relation may have such multiple policies defined for different users.
Also, a user might make changes in policy using ALTER POLICY command
and it may also delete policy using DROP POLICY command.

Scenario 2 - Operating System: A simple example of authentication
in Linux is illustrated to depict how row level securities works. Consider a
relation named passwd which contains all the authentication related infor-
mation, such as user_name, pwhash, uid, gid, etc. The structure of the table
is depicted below:

CREATE TABLE passwd (
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user_name text UNIQUE NOT NULL,

pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,

real _name text NOT NULL,
home_phone text,

xtra_info text,

home_dir text NOT NULL,
shell text NOT NULL
);

Assuming there are three roles existing in the system: Admin, Bob, Alice.
The passwd relation is populated with the following tuples:

INSERT INTO passwd
VALUES (’admin’,’xxx’,0,0,’Admin’,’111-222-3333’ ,null,’/root’,’/bin/dash’);

INSERT INTO passwd
VALUES (’bob’,’xxx’,1,1,’Bob’,’123-456-7890’ ,null,’/home/bob’,’/bin/zsh’);

INSERT INTO passwd
VALUES (’alice’,’xxx’,2,1,’Alice’,’098-765-4321’ ,null,’/home/alice’,’/bin/zsh

Since, relations do not support row level security by default, so the fol-
lowing command enables the row level security for that particular relation:

ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

Once the row level security is enabled, owner of the table creates policies
for different users using the following commands:

e Admin can access or modify all the tuples.
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH
CHECK (true);

e Normal users, Alice and Bob, can access all the tuples.
CREATE POLICY all view ON passwd FOR SELECT USING (true);

e Normal users, Alice and Bob, can update their own records.
CREATE POLICY user mod ON passwd FOR UPDATE USING (current user
= user_name) WITH CHECK ( current_user = user_name );
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Now, these security policies will be applicable every time user tries to
access or modify this relation.

Statistical databases [18] might also give rise to covert channels. If a sta-
tistical query produces result which is contributed by a few tuples only, then
a user might infer values of the individual tuples, which is not supposed to
happen in case of statistical queries. Statistical queries are not supposed to
reveal individual values of the tuples; but, they are only supposed to return
aggregate results. The problem has been described in detail using an exam-
ple illustrated below.

Scenario 3 - Student Information System: Suppose a Student relation
contains the following attributes: name, domain, marks as shown in Table
3.1, in which marks of the students are sensitive and are not supposed to
be revealed. This implies users cannot execute usual SELECT queries that
fetch marks of the individual students. However, a user can always perform
aggregation functions on sensitive attribute, marks, since the relation is a part
of statistical database. But, performing statistical operations on a column
might lead to marks of an individual student getting revealed. The same is
illustrated with the help of an example.

Name | Domain | Marks

Alice Physics 89
Bob Biology 74
Cathy Physics 88

Harry | Chemistry 91
John | Chemistry 90

Table 3.1: Students relation

Suppose a user issues a query to fetch the count of all students studying
in physics department, which is a statistical query. The query is as follows:

SELECT COUNT(*) FROM Students WHERE Domain=’Physics’;

If this query returns a very small count as result, then the user might
end up inferring the marks of individual students; which is a covert channel
revealing the information indirectly. The output of the SELECT query on
Students relation returns 1.

Since the user now knows that Physics department has only one student,
it can further execute query to fetch sum of marks of students studying in
Physics department; which would be the marks of an individual student.
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The query for fetching sum of marks of all the students studying in physics
department is as follows:

SELECT SUM(Marks) FROM Students WHERE Domain=’Physics’;

The output returned by this query will be 89, which shows that the marks
of Alice has been revealed. This way a user can infer values of the individual
tuples.

In addition to the above problems, existing systems have several other
limitations as listed below:

e The standard query model does not provide a good basis for reasoning
about flows of sensitive information. The classic PostgreSQL does not
restrict information to be passed on to other unauthorized users once
an authorized user gets access to sensitive data.

e DBMS must provide ways to manage the information flows that arise
through mechanisms such as complex queries, stored procedures and
views. For instance, executing complex queries such as JOIN, on two
or more tables with different security levels, the resultant table should
have a level at least as much as the highest level of all tables used for
the JOIN operation.

e Transactions and constraints can lead to information leaks. For in-
stance, a user within the same transaction may read tuples from a
private database and write in onto a public database.

Scenario 4 - Employee Management System: Consider an employee
database containing information of all the employees in an organization. The
table contains information such as name, address, designation, salary, contact
details etc. Now what will happen if all the employees are given unrestricted
access to such a table? The privacy of many individuals will be compromised.
One way to prevent this is to bifurcate the table into multiple tables and grant
access to them accordingly. but is this solution viable in all the cases? Here
since the stakeholders of this single table are restricted to a employees of an
organization, and the information is not sensitive, what should be solution
in case if the database is much more complex and contains hundreds of ta-
bles? Splitting the tables into multiple smaller tables and granting access
accordingly will be a much cumbersome task. Thus the need of a much bet-
ter, cleaner solution arises. Using MLS database is the solution. Assigning
users a clearance level and the tuples in the database tables a classification
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Figure 3.1: Different levels of employees accessing a common database

level, the access to the tuples can be granted depending on the security level.
This solution avoids the need of modifying the database design in order to
incorporate the various security requirements.

Summary of Requirements:

e In the first scenario of medical data, data is available to all the users
without any restrictions. Also, there is no mechanism to declare data
as private.

e In the second scenario of authentication in operating system, users
themselves create security policies on row level on per user basis, which
follows Discretionary Access Control.

e In the third scenario of Statistical queries that are not supposed to
reveal individual tuple information, can do so indirectly using covert
channels if the result of aggregation function is contributed by a very
few tuples.

e In the last scenario, different sensitivity levels of tuples as well as users
are not captured properly by the existing system, which leads to access
of data objects belonging to a higher sensitive class by a user belonging
to lower sensitive class.
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3.2 Implementation Details

Various approaches have been implemented in order to secure multilevel
databases. Primarily, the approaches vary in terms of security policies used.
The reason behind this variation is because of the applications using the
database can either have a finite set of subjects in terms of their roles, as
in the case of HotCRP or can have general users with no specific roles de-
fined. Since, the Readers Writers Flow model demands set of subjects to be
constant within the system, so databases like HotCRP can be implemented
using the same. However, there are some general purpose databases whose
subjects are not predefined. Such cases are implemented using tuple based
labeling approach. The following sections describes both the approaches in
detail.

3.2.1 Utilizing Readers Writers Flow Model

Readers Writers Flow Model is one of the Lattice based models to introduce
information flow control in the systems. It supports multilevel security sys-
tem and has the ability to secure to control information flow in the system.
Many security policies and models were proposed as a Biba integrity model
[20], Bell La Padula model [10], Chinese Wall Security model [21]. But these
models cannot be implemented on different types of system. Some models
are also proposed specifically for database system: Sea View security model
[4] and Information Flow Control for Databases [2].

3.2.1.1 Labelling the data

Readers Writers Flow Model follows a field based labelling approach, which
means that all the cells in the database has a label assigned. It works at
a much finer granularity level in terms of labelling. Each data cell acts as
a separate object in the database. A separate column has been introduced
for each attribute for storing these labels in the relation. A label is a triplet
containing owner, set of readers and set of writers. All the subjects and
objects in the system are assigned labels to depict their level of sensitivity
in the lattice. The subject labels are dynamic in nature while the object
labels remain static. Also, all the labels forms a partially ordered set, i.e.,
there exists some pairs that are not comparable. Since partially ordered sets
follows reflexive, transitive and antisymmetric properties, all RWFM labels
together forms a lattice.
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attr | l_attr | attr lattr, | === ===

Figure 3.2: Table schema in RWFM based approach

3.2.1.2 Information-flow semantics of SQL Queries

Data Definition Language (DDL) statements and Data Manipulation Lan-
guage (DML) statements are changed to incorporate the label checking before
reading from and writing to data. In DDL, CREATE TABLE statement is
modified to support labels per column basis without making user aware of it.
In DML, SELECT, INSERT and UPDATE statements are modified so far
in order to perform label checking before permitting any information flow.
The following sections describes the implementation details of changes done
in both DML and DDL statements.

3.2.1.3 CREATE TABLE query

This statement creates a new table in the database with the structure defined
by user in the query. When a user executes this query, the PostgreSQL
creates label columns automatically for each of the user defined columns
without letting user aware of this. The addition of label columns is done
at parsing level in /backend/parser/gram.y file. The grammar of CREATE
TABLE is modified to support the change. For each ColumnDefinition, a
LabelDefinition is also added, which is of type ’text’, for storing the values
of labels. The column name for the labels is [_ followed by the corresponding
column name whose label value will be stored in this column. This new label
column is then added to the element list maintained by the CreateStmt,
which is a list of Column definitions. Further processing of this new column
appended will be same as that of other user defined columns. The assumption
taken here is that all the columns whose names start with [_ are treated as
labels and the PostgreSQL will throw an error if any user tries to create a
column name starting with [_.. The table schema is shown in Figure 3.2.
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Algorithm 1 CREATE TABLE procedure
1: procedure CREATE TABLE(query)
2 Parse the TableElementList of the CreateStmt rule.
3 if any column name starts with 1.7 then
4 throw an error
5: else
6
7
8
9

for each TableElement do

create a new LabelDefinition called LabelDef

set LabelDef — colname="1" + ColDef — colname
: set LabelDef — type Name="text”

10: Append LabelDef to TableElementList

11: return

3.2.1.4 Select Query

Select statement is used to retrieve data from table in database. In the
output, only those rows must be shown whose readers set contains the user
on behalf of whom query is being executed. The check must also be performed
on all the columns present in the where clause condition, if it is also a part of
query. To perform this label checking, a few changes needed to be done while
creating the query tree and also, when the plan is executed, i.e., when the
actual values are fetched from the database. Just before creating the query
tree, a function called transformSelectStmt() in /backend/parser/analyze.c
transforms the targetlist as well as the whereclauselist. In the same function,
before the transformation, parse all the columns in the targetlist and add the
corresponding label columns to the targetlist. Do the same for all the columns
in the wherelistclause. Now when the plan is being executed (ezecutePlan()
defined in /backend/executor/execMain.c) and the tuples are fetched one by
one to be shown as output, perform the check on all the label columns in
the targetlist. If current_user is present in the readers set of all the label
columns, send the tuple to the destination to be shown as output, else ignore
the tuple.
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Algorithm 2 SELECT Procedure

1: procedure SELECT (query, user)
2: Parse the targetlist and whereclauselist
3: for each column in the targetlist and whereclauselist do
4: Append the corresponding label column to the targetlist
5 When the plan is being executed, fetch the tuples one by one.
6 for each tuple do
7 if current_user is in the readers set of all target label columns
then

8: send tuple to the destination
9: else

10: ignore the tuple
11: return

3.2.1.5 Insert Query

Insert statement is used to insert new rows into a table. Insert statement is
considered as creating new object in database. So according to create rule
of Reader Writer Flow Model, each new inserted data label is updated with
current subject’s label. If target table has primary key and the key value to
be inserted is already in the table, then a check need to be performed to see
if the current subject is in the readers set of present label of the key column.
If it is not, then the row should be inserted without throwing any duplicate
key value error as according to RWFM model, this won’t be considered as
violation of data integrity constraint. Otherwise, PostgreSQL must report
an error to the user. Label values for the columns values to be inserted are
initialized with the label of subject at the parsing level, i.e., in the rule for
InsertStmt defined in /backend/parser/gram.y. Now, the PostgreSQL looks
for the index of primary key, if it exists and scans the B-tree to check if
the key value already exists. The check is performed in _bt_check_unique()
defined in /backend/access/nbtree/nbtinsert.c. If the value already exists,
fetch the whole tuple by de-referencing the record pointer value stored in
index. After fetching the row, check if readers set in label of key column
contains the current subject. If yes, then throw duplicate key value exists
error to the user; else, insert the row in the table and update the index as
well.
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Algorithm 3 INSERT Procedure

procedure INSERT (query, user)
for each label columns do
set the label values same as the current subject’s label

if key value already exists then
Fetch the tuple using the index

1:

2

3

4: if index for the relation exists then

)

6

7 if current subject exists in the readers set in label of key col-

umn then
8: throw ”duplicate value exists” error
9: return
10: Insert the row in the table
11: Update the index
12: return
13: Insert the row in the table
14: return

3.2.1.6 Update Query

Update statement changes the values of specified columns in all rows that
satisfy the given condition. Only the columns to be modified need to be
mentioned in the SET clause; columns not explicitly modified retain their
previous values. According to the RWFM model, the labels of the columns
to be updated must have current subject in their writers set and if the query
has where clause, then the labels of all the columns on which condition is
applied in whereclause must have current subject in their readers set.
Before performing the check, labels of all the columns present in update-
targetlist and whereclause list should be added to update targetlist. This is
performed just before the query tree creation and before transforming udate-
targetlist and whereclauselist in a function called transformUpdateStmt() de-
fined in /backend/parser/analyze.c file. Now when the plan is being executed
and the tuples to be updated are being fetched one by one, perform the label
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checking. The UPDATE statement’s execution is done by a function called
execUtils() defined in /backend/executor/nodeModifyTable.c file.

Algorithm 4 UPDATE Procedure

1: procedure UPDATE(query, user)

2: Parse the updatetargetlist and whereclauselist

3: for each column in the updatetargetlist and whereclauselist do
4: Append the corresponding label column to the updatetargetlist
)
6
7

When the plan is being executed, fetch the tuples one by one.
for each tuple do
if current subject is not present in the readers set of columns
present in whereclauselist then

8: Do not update the tuple and continue fetching the next tuple.

9: if current subject is not present in the writers set of columns
present in updatetargetlist then

10: Do not update the tuple and continue fetching the next tuple.

11: return

3.2.1.7 Transactions

A transactions is a set of multiple SQL queries forming a single logical oper-
ation. A transaction either gets executed completely or not executed at all;

e., it is atomic in nature. Each of the query executed by PostgreSQL is a
part of transaction. Individual queries create a new session for a transaction
and once the execution is done, transaction is committed or aborted. The
creation of a new session initializes the subject label with the initial value;
i.e., owner is the subject itself, readers set contains all the subjects in the
system and writers set contains again the subject itself. In case of multiple
statements getting executed as part of a transaction, subject label might
climb up in lattice as it is dynamic and can only be changed if subject reads
information. Further, if the subject inserts a tuple in a relation, the label
of the attributes of the tuple would reflect the updated label of the subject.
That is, subject label has to be maintained in some data structure in main
memory. It need not be stored in a persistent storage as once the transaction
gets committed or aborted, the subject label will not be valid and need to
be initialized again for execution of other queries.

When a subject begins a transaction, a flag is set to indicate if the queries
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going to be executed are part of transaction or not. If yes, then the subject
label is fetched from the data structure and relevant checks are performed
using that label. The semantics of the basic SQL queries remain the same as
discussed above; the only difference being subject label is fetched from the
data structure as the label of the subject might change during the course of
the transaction. When user execute commit or abort the flag is again unset
and the label of the subject becomes invalid.

3.2.2 Tuple Based Labelling Approach

This approach is adopted in order to incorporate information flow control
in systems where subjects are not predefined as in the case of RWFM. This
drawbacks of RWFM has been handled by this approach. However, RWFM
also plays a role in case of complex queries, stored procedures and transac-
tions . The RWFM labels are a bit different from the one defined in the
previous approach. The primary key value of each tuple is treated as a sep-
arate subject here in order to generalize it for different systems.

3.2.2.1 Labelling of data

This security policy follows the tuple level labelling approach unlike RWFM
which follows cell level labelling. Assigning labels at row level do saves space
but the granularity of classification of sensitivity level of data is finer in
RWFM as compared to this policy. Also, here the labels are not like RWFM
labels which are a triplet containing owner, set of readers and set of writ-
ers but is a combination of confidentiality level and integrity level. The
confidentiality level defines the highest level a subject can read; while the
integrity level defines the lowest level a subject can write. The levels are to-
tally ordered set, i.e., any two of the levels from the universal set of levels are
comparable. In other words, if all the levels satisfy the following condition,
then the levels are totally ordered.

For any Lq, Lo in L, either L1 > Ly or Ly < Ly must be defined, where
L is a Universal set of all the security levels.

For instance, if L € {TOP SECRET, SECRET, CONFIDENTIAL, UN-
CLASSIFIED}, then L is totally ordered because all the security levels are

comparable to one another, i.e.,
TOP SECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED
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In the implementation, security levels are treated as integers so that a
system can then have as many security levels as possible, 0 being the lowest
security level.

All the tuples are assigned confidentiality as well as integrity levels. Along
with these, users can also insert private column value which is not supposed to
be shown to any user. Even if a user has security level which is in compliance
with the security level of tuple, then the user must not be allowed to view the
value of that particular column. The value of that column is set as NULL
just before displaying.

3.2.2.2 Information-flow semantics of SQL Queries

The functionalities of all the SQL queries, both DML as well as DDL state-
ments are modified in order to incorporate the security policy within the
PostgreSQ)L. However, the syntax and semantics of the queries remain the
same which is one of the advantage of using this policy. Changing the syntax
of the queries might yield inefficiency. The query execution follow the best
plan approach. This section gives details of the changes made for each of the

SQL query.

e CREATE TABLE Query

This query creates a relation containing the attributes provided by the
user. The attributes can have constraints like primary key, not null,
check constraints, etc. The existing implementation of CREATE TA-
BLE query is augmented to incorporate private column values as well.
A user has an option to hide its private information, if required, from
all other users. However, it can grant permission to some specific users
to view the values. For instance, in the case of Hospital Management
System, a patient might require to provide private information to doc-
tor. In that case, she must have an option to make that value public
just for her doctor. This is similar to Discretionary Access Control,
where a user has control over the application of security policy.

A flag, 0 or 1, is used to indicate whether a cell value is private or not
and user provides the value of this flag at the time of tuple insertion.
These private value flags are stored in a separate column created for
each of the attributes. The attribute is declared as integer type and
is created automatically when the user fires CREATE TABLE query,
i.e.,; user need not define the column in the query explicitly. Along
with the private columns, a label - confidentiality and integrity levels,
is also maintained per tuple. So, two extra attributes are also added to
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store the security levels of tuples. Both the columns are integer type
and again user need not define it explicitly. It is automatically created
when the query fires the query. Finally, the augmented relation con-
tains:

— all the user defined columns,
— private column for each of the attributes,

— 1 attribute each for confidentiality and integrity levels.

c_level |i_level attr, | lattr | attr, l_uttr2 ——————

Figure 3.3: Schema of a table in SecPostgreSQL

The details of the implementation are as described below:

In the parsing phase, i.e. in gram.y file, a non terminal rule, Pri-
vateColumns, is created which will be invoked for all the user defined
attributes. This non terminal rule is also declared in gram.y file. So,
even though the user has not defined the column in the query, the
columns are created automatically. Also, for creating a separate at-
tribute for accomodating confidentiality and integrity values for each
tuple, another rule called c_level and i_level are created. Both of these
non terminals are declared as tokens before defining the rules. Along
with defining a few additional non terminal rules, the node structure for
the respective statement is modified so that the changes get reflected in
the further stages as well. CREATE TABLE is processed and executed
by wutility processor as DDL statements are straight forward and does
not require any optimization and planning.

GRANT MAX SECURITY _LEVEL

There are primarily, two types of subjects involved in the system - one
is database admin and the other one is normal user. PostgreSQL be-
haves differently with both types of users. For database administrator,
PostgreSQL bypasses all the security rules as it is assigned the highest
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level of clearance and manages data of all the users. For normal users,
all the SQL queries passes through reference monitors that performs
the check before query execution.

Initially, database administrator assigns the maximum security level a
subject can request to execute with. All the users in the system are
assigned this level. Once the maximum level is granted, users can now
request to execute queries with some specified levels. If the level re-
quested is lower or equal to the maximum level, PostgreSQL grants it
to the user. Otherwise an error is thrown stating Requested Security
level is higher than the mazimum security level that can be assigned!.

In order to grant maximum security levels, which contains both con-
fidentiality and integrity levels, database administrator executes the
following queries:

— BEGIN GRANT
This query indicates that database admin is about to grant max-
imum security levels to the subjects. This query is like an indica-
tion that PostgreSQL can start storing values for all the subjects.
The existing PostgreSQL does not include this query in their im-
plementation. This is an additional query created. The syntax of
the query is as follows:

BEGIN GRANT;
— GRANT MAX_SECURITY_LEVEL

This query grants maximum security level to the users specified.
The full syntax of the query is as follows:

GRANT MAX_SECURITY_LEVEL <conf_level><integrity_level>TO
<user_name>;

This is also an additional query created in PostgreSQL. The se-
curity levels are stored in information schema in the description
column.

— COMMIT GRANT
This query signals to store all the security levels assigned to all
users in information schema. Earlier, while executing GRANT
MAX SECURITY _LEVEL, all the levels are still in main memory
store in a data structure. Executing this query signals PostgreSQL
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to make the changes permanent in the system. These changes re-
tain in the database till the users are not granted different security
levels to the users again.

e GET SECURITY _LEVEL

This query is executed by normal users. It requests PostgreSQL to
grant security levels if it is lower than or equal to the maximum security
level a subject can get. After the query is executed, reference monitor
performs a check the security level can be granted or not. If yes, all the
queries executed after this would run with the assigned security level.
Otherwise an error is thrown and default security level is granted, which
is lowest confidentiality level and the highest integrity level. The syntax
for requesting for a security level is as follows:

GET SECURITY_LEVEL <conf_level><integrity level>;

e SELECT Query
This query retrieves tuples from the relations that satisfies the con-
ditions provided by the user. The query contains the following main
parts:

— a target list, which contains the columns that are requested to be
projected,

— A table list, which contains list of relations from which tuples are
to be fetched. This may contain a single relation as well as a JOIN
of multiple relations,

— A qualification clause, this contains the conditions of the WHERE
clause and HAVING clause, if aggregate functions are being pro-
jected in the query.

There are other clauses as well, like GROUP BY, ORDER BY etc.,
which do not require modifications in their implementations in order
to adapt to our security policy.

SELECT queries behave differently for database admin and other users
in our case. Database admin gets all the tuples requested irrespective of
the confidentiality level and integrity level of each row and also database
admin can view private values as well. However this is not the case with
other users.

The overview of how the SELECT queries should work is as follows:
The relation contains tuples that are assigned confidentiality and in-
tegrity levels. Also, the tuples can have private values for some at-
tributes.

32



When a user logs in, it first requests for the confidentiality and integrity
level to start with. In default case, it would be the lowest confidential-
ity level and the highest integrity level a subject can get. Now, when
user fires the SELECT query, PostgreSQL perform check on the con-
fidentiality levels of the tuples that satisfy the qualification provided
by the user. The confidentiality levels of all the tuples to be displayed
must be equal or lower than that of the user, i.e., the user must be at
equal or higher confidentiality level in order to view the tuples. This
way different users can get different views of database on the basis of
their current level.

The detailed implementation is as follows:

After the SELECT query is executed by the user, PostgreSQL first
checks if the SELECT query is a part if transaction or not. If it is
a standalone query, then a new transaction session is created and a
new memory context is also created for the query execution. But,
if the SELECT query is a part of a transaction, then it shares the
transaction session with the previous queries which have been part of
the same transaction. Once the session has been created, the query
now passes through the parsing stage.

The query string is passed to lexical analyzer and parser which is imple-
mented using flez and bison in PostgreSQL. Syntax errors are reported
by the parser if encountered any and the prompt on the client side
starts asking for the next query. If no error found, the query tree is
constructed and passed on to the analysis phase.

UPDATE Query

This query updates the values of data cells specified in the query for
the tuples that satisfies the qualification specified. Update involves
both reading as well as writing data. Tuples are first read from the
tables to check if they are satisfying all the conditions specified in the
qualification. If yes, then targeted columns are updated, else next tuple
is fetched for checking. Since this involves both simultaneous reading
and writing and our security model does not allow writing information
to a lower level and reading data from upper level, the label of the
subject must be the same as that of the tuple; i.e., c_level and i_level
values of the tuple must be exactly same as that of subject’s current
c_level and ilevel values. Also, if qualification of UPDATE query is
performing a check on columns that are declared as private by the
owner then that tuple must not be available for updation.

All the changes made for UPDATE queries are done during the exe-
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cution phase, which means the query plan has been optimized and the
best plan is getting executed. This is one of the main advantage of our
security model that it does not involve changing the syntax of SQL
queries which might lead to inefficient query plan execution.

During the execution phase, in the ezecScan(), when the tuple slots
are being retrieved for checking and updating, the execution flow is
directed towards the reference monitor, which performs check on the
security levels of the tuple. It also checks for the private column values
in the where clause; if found, it discards that tuple and proceed with
the next ones. A flag is maintained which is set to true when reference
monitors finds that the tuple should be updated; otherwise it is set
to false. This flag is used in execUpdate(), where the actual update is
performed.

DELETE Query

This query deletes entire tuple that satisfies the qualification mentioned
in it. Like Update, deleting a tuple also involves both reading and
writing the data. Tuples are first read from the tables to check if they
are satisfying all the conditions specified in the qualification. If yes,
then that entire tuple is deleted, else the current tuple is discarded and
next tuple is fetched for checking. Since this involves both simultaneous
reading and writing and our security model does not allow writing
information to a lower level and reading data from upper level, the
label of the subject must be the same as that of the tuple; i.e., c_level
and i_level values of the tuple must be exactly same as that of subject’s
current c_level and i_level values. Also, if qualification of DELETE
query is performing a check on columns that are declared as private by
the owner then that tuple must not be available for deletion.

All the changes made for DELETE queries are done during the execu-
tion phase, which means the query plan has been optimized and the
best plan is getting executed. This is one of the main advantages of
our security model that it does not involve changing the syntax of SQL
queries, which might lead to inefficient query plan execution.

During the execution phase, in the execScan(), when the tuple slots are
being retrieved for checking and updating, the execution flow is directed
towards the reference monitor, which performs check on the security
levels of the tuple. It also checks for the private column values in the
where clause; if found, it discards that tuple and proceed with the next

34



ones. A flag is maintained which is set to true when reference monitors
finds that the tuple should be deleted; otherwise it is set to false. This
flag is used in execDelete(), where the actual delete is performed.

The execution flow for SELECT, UPDATE, and DELETE has been

shown in the following figure.
Display the tuple . execProject() }

Update I Updatethe tuple || execUpdate() ]
Delete the tuple H execDelete() ]

Figure 3.4: Integration of RWFM Monitor for Select, Update and Delete
queries
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e INSERT Query
This query inserts a new tuple in a relation which is similar to creating
objects in the systems. The tuple inserted has the same label (confi-
dentiality and integrity levels) as that of the subject inserting it, like
the case of creating new objects. Along with data values user also pro-
vides private flag values, which is either 0 or 1, to indicate if a column
value is private or not. Each table has a primary key attribute. A
user may try to insert duplicate key values. The existing PostgreSQ)L
throws error for the same. However, since we have introduced security
levels, not all the tuples are visible to a user. So, three cases may arise:

— The primary key value is already present in the relation and is
visible to the user, i.e., user is at a higher or equal confidentiality
level as that of the tuple. In such cases, user must be denied to
insert another tuple with the same primary key value.

— The primary key value is already present in the relation and is not
visible to the user, i.e., user is at a lower confidentiality level as
that of the tuple. In such cases, user should be allowed to insert
the tuple with the same confidentiality and integrity level as that
of subject.
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— The primary key is not present in the relation. In such cases, user
must be able insert the tuple with the same confidentiality and
integrity level as that of subject.

The execution flow for INSERT query has been shown in the following
figure.
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Figure 3.5: Integration of RWFM Monitor for Insert query

e Transactions
Transactions are set of multiple SQL DML statements treated as a
single logical operation. Transaction may contain SELECT, INSERT,
UPDATE, DELETE queries. A single transaction is considered as a
atomic operation which is either executed successfully or none of the
statements get executed. So, they either commits or gets rolled back
or aborted.

When a subject executes a transaction, it is assigned a label which
comprises of security level as well as RWFM label. The initial label of
the subject contains security level, subject itself in the set of readers
and empty set of writers. As subject reads tuples during a transaction,
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primary key values are added to writers set and thus, its RWFM label
moves up in the lattice i.e. it is now at a higher level in the lattice. This
label is modified every time subject reads tuples. This label is valid till
the lifetime of transaction. Hence, it need not be stored in a persistent
storage. Now, when subject executes query other than SELECT, i.e.,
INSERT, DELETE and UPDATE, the following conditions arise:

— The tuple to be inserted /updated/deleted is already been read by
subject before, i.e. it is in the writers set of subject. If so, then
subject must not be allowed to insert/update/delete the tuple.

— The tuple to be inserted/updated/deleted is not read before, i.e.
it is not in the writers set of subject. If so, subject is allowed to
read/write/delete the tuple successfully, if the security rules also
allow to do so.

CREATE VIEW

All the relations in the database are created by database administrator
and normal users do not have direct access to the tables. This restric-
tion is because all the users should not be permitted to view all the
attribute values. Therefore, for normal users, database administrator
creates views which are more like Access Views to the users. Users can
insert, read, write and delete via access views only. Each view also has
a label associated with it which is a combination of security levels and
RWFM label. Security levels of the view is same as that with which the
current query is being executed. Here, RWFM label is not the same as
the one implemented in the previous approach. It obviously contains
the set of readers and a set of writers but the subjects here is not the
same as before. The readers set contains subject who is currently cre-
ating the view; while the writers set contains all the primary key values
that are written in the view. Each primary key value is treated as a
separate subject here.

The existing implementation of CREATE VIEW query is changed to
incorporate building labels for the entire view. This subject label is
then stored in information schema along with other information of the
view created. Later when the view is accessed, this label would be
fetched by reference monitor in order to perform security rule checks.

A subject can create a view of a relation if it wants to access only a
few specific attributes of the relation. Creating a view is similar to
executing a SELECT statement. The information flow rules are also
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same as SELECT statement.All those tuples whose confidentiality level
is not higher than the subject’s confidentiality level and integrity level
not lower than the subject’s integrity level must be a part of the view;
i.e.; all those tuples which are at lower or equal level in the lattice can
be read by the subject and hence, can be a part of the view. When
it is getting computed, label of the view is also created and stored in
information schema. The label contains the following components:

— Security level of the view, which is the same as that of owner’s
current security level.

— RWFM Label:
Owner of the view
Readers set containing only the subject creating the view.

Writers set containing all the primary key values along with
their security levels that are part of the view.

The security level of the view is stored so that it can be retrieved later
when the view is accessed and is assigned to the subject accessing it,
if it is in the readers set of the view. This implies, the view can be
accessed by a subject which is in the readers set and all the tuples that
are accessible with the security level of the view are available to the
subject irrespective of its current security level.

The syntax for creating a view is same as that of creating a virtual
view in SQL, which is as follows:

CREATE VIEW <view_name> AS <select_statement>;

During the execution phase, before scanning all the tuples, label of the
view is allocated memory and is populated with subject’s current secu-
rity level, owner and readers set. Now, in execScan(), when the tuples
are being checked for their qualification, execution flow is directed to-
wards reference monitor to check if tuple can be read by the subject
with the current security levels. If the tuple is visible to the subject,
then the corresponding primary key value of that tuple is added to the
writes set of view label; otherwise the tuple is discarded. Later, when
the server is done with scanning all the tuples;i.e., in ezecutePlan(),
the label of the view is updated in information schema.

Declassifying Views
These views are created with an intention of making some of the at-
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tributes of a tuple belonging to a higher security level to be made
available to subjects that are at lower security level. The declassifica-
tion is achieved by adding a user or multiple users to the readers set of
the label of the view. When a subject, which is present in the readers
set of a view tries to access it, the subject start operating at the level
of the view irrespective of its current level and gets all the tuples that
were a part of the view at the time of its creation. Declassification is a
safe way of releasing information to subjects having lower security level.

The syntax of creating declassifying views is as follows:

CREATE VIEW <view_name> AS <select statement> WITH RELABEL
FOR ’<subject name>’;

The above statement creates a view with the same security level as that
of subject’s and the readers set contains the owner of the view and the
subject for which relabelling has been done. The writers set as usual
contains all the primary key values with their security levels of those
tuples that are part of the view.

During the start of execution phase, label of the view is allocated mem-
ory and is populated with populated with subject’s current security
level, owner and readers set. Now, in ezecScan(), when the tuples are
being checked for their qualification, execution flow is directed towards
reference monitor to check if tuple can be read by the subject with the
current security levels. If the tuple is visible to the subject, then the
corresponding primary key value of that tuple is added to the writes set
of view label; otherwise the tuple is discarded. Later, when the server
is done with scanning all the tuples,i.e. in ezecutePlan(), the label of
the view is updated in information schema.

Sanitized views

Sanitized views are same as Declassifying views, the only difference be-
ing view is made available to all the subjects in the system i.e. it is
made public. The implementation approach is similar to that of de-
classifying well. Like declassifying views, subject trying to access the
view is first checked in its readers set; if present, it is assigned the same
security level as that of the view and then all the tuples having same
primary key values are fetched and returned. The syntax for creating
sanitized view is as follows:
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CREATE SANITIZED VIEW <view_name> AS <select statement>;

The above query first retrieves all the subjects present in the system
and then append them to the readers set. The label of the view is then
stored in information schema so that it can be retrieved later when the
view is accessed.
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A brief summary describing the semantics of SQL queries is presented
below.

e CREATE TABLE Query

CREATE TABLE query creates a new user defined relation with ex-
tra attributes to accommodate confidentiality level, integrity level, and
private or non private values for each of the user defined attributes.
These extra columns are not explicitly defined by user in query, which
means that syntax of CREATE TABLE remains intact for users.

e GRANT / GET SECURITY _LEVEL Query

GRANT MAX_SECURITY_LEVEL SQL construct has been created
for database administrators to assign the highest confidentiality and
the lowest integrity level at which a user can execute queries.

e GET SECURITY_LEVEL Query

This query has been created for users to request for a certain level of
confidentiality and integrity. The levels requested are then validated
to check they are not higher than the maximum levels assigned by
database administrator.

e SELECT Query

SELECT queries retrieve tuples whose confidentiality and integrity pair
is dominated by subject’s label pair. Formally, if D is the set of tuples in
the database, then the result of the query is equivalent to that of a stan-
dard SQL query on database D’ | where D’ = {7|reD A (1.Lc, 7.L;) <
(S.L¢, S.Ly)}.

All complex SELECT statements including JOIN, aggregate functions
follow the same rule; however the semantics of the statements remain
the same.

e INSERT Query

INSERT query adds new tuples in a relation specified with values for
all the user defined attributes as well as for their corresponding pri-
vate/non private columns. INSERT query fired on a relation contain-
ing primary key first validate for the uniqueness constraint only on the

41



subset of tuples whose security levels are dominated by that of subject’s
level. If the key value exists in that subset, then an error is thrown;
else the tuple is inserted irrespective of the existence of same key value
outside the subset. Polyinstantiation prevents insertion of duplicate
tuple at a higher security level.

UPDATE Query

UPDATE query requires both reading the tuples for finding the subset
that matches the qualification provided by user as well as writing to the
matching tuples found while reading. Therefore, UPDATE query only
updates the tuples that have same level as that of the subject as tuples
with more restrictive labels are not visible to the subject and tuples
with less restrictive labels cannot be written by the subject without
violating the information flow rules.

DELETE Query

DELETE query also requires reading the relation for finding qualifying
tuples for deletion. Therefore, this query can only delete tuples having
same level as that of the subject because like UPDATE, tuples with
more restrictive levels can not be read and tuples with less restrictive
levels can not be written without violating information flow rules.

CREATE VIEW Query

CREATE VIEW query creates an access view with a label comprising
of security level pair and a Readers Writers Flow Model label. The
security level is same as that of the subject creating the view, readers
set of RWFM label contains the current subject itself and writers set
contains primary key values of all the tuples that are part of the view.
Access views are later retrieved with the same security level as that of
view irrespective of the subject’s current security level.

SANITIZATION AND DECLASSIFYING VIEWS

DECLASSIFYING VIEWS downgrades a view at higher security level
to be visible to some specific subjects that are at lower security level.
Declassifying the views adds other subjects to the readers set of view
label in order to make it available to them.
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SANITIZATION is same as declassification with the only difference
being that the view is made public to all the subjects present in the
system i.e. all the subjects are added to the readers set of view label.

In this approach, unlike the approach we adopted in previous section
(RWFM), transactions are transparent to the users. All the changes made to
the semantics of individual queries would be sufficient to make transactions
run the desired way, i.e., information flow rules will be enforced on all query
executions transparently.

43



Chapter 4

Case Study - Conference
Management System HotCRP

HotCRP is a widely used conference management system, which is rich in
security policies for sharing information among users. The existing imple-
mentation of HotCRP is vulnerable to information leakage and has various
bugs and covert channels, that helped in exposing contact information of all
the participants. HotCRP has authors, reviewers and program chair as users.
Authors submits their papers, reviewers review papers that are allotted to
them for review and program makes the final decision and announces it to
users. Program Chair also defines conflict of interest so that other reviewers
can not access reviews of their own paper or papers of their close colleagues.
Other features are also included, such as, making all the reviews submitted
to be available to top few authors, who got maximum score in the review
process. This can be achieved when program chair declassifies reviews for all
those authors. Program can also sanitize information to make it available to
all of the subjects in the system.

The conference management system has a predefined set of subjects and
objects, which is why RWFM can be used to restrict invalid information flow
in the system. The only difference is that of the additional security rules that
are defined by program chair to provide a fair review system should also be
taken care of. All these rules are provided to the system as input in the form
of files. Program chair assigning papers to reviewers follows Discretionary
Access Model. So, this case-study is a blend of both DAC as well as MAC
models.
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4.1 System Specification

The system constitutes a well defined set of subjects and a set of objects.
There are primarily three major roles having different privileges, which are
as follows:

e Program chair, denoted by PC.
e A set of reviewers, denoted by R.

e A set of authors, denoted by A.

The objects in the system are as follows:

e A set of all papers, denoted by P.

e A set of all reviews submitted, denoted by Re.

Some of the basic security rules are defined which are to be conformed to
in order to provide a fair review system. They are as follows:

e Authors can not review a paper.

ie. ANR=¢

e Program chair is not allowed to review any paper. i.e. PC' N R=¢

e Reviewers are not allowed to access reviews of reviewers that are present
in the conflict set. The conflict set is defined by the Program Chair
before assigning the papers for reviews to all reviewers. The set is a
mapping between a paper and a set of reviewers. All the reviewers be-
longing to the set are not permitted to access reviews of that particular
paper even if Program Chair declassifies reviews to be available to all
the reviewers. The conflict set is defines as follows:

Conflict (C) : P — >2%
For a paper p;, Conflict set can be defined as follows:

C(pi) = {rl, r2} where r1, r2 are the reviewers.
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e Program chair assigns paper to be reviewed to all reviewers present
in the system. No other reviewer is allowed to review that particular
paper other than the ones present in assigned set. This assignment
function is defined as follows:

Assignment(AS) : P — >2%

and Vp; € P, AS(p;) N C(p;) =¢

e A reviewer is permitted to see reviews submitted by other reviewers
only after he/she has submitted review for the papers assigned.

4.2 Database Schema

A part of schema of conference management system has been taken to demon-
strate how information flow is tracked and how the application has been made
more secure while also abiding by the security policy. The schema contains
information about the papers submitted by authors, reviews submitted by
reviewers and the final decision taken by Program Chair for each of the pa-
pers submitted.

The database contains following relations:

e Paper (paper_id, paper_title, author, score)
e Paper_Review (paper_id, review_id, reviewer, review)

e Paper_Decision (paper_id, decision)

The above relations are user defined relations; however the actual relation
stored in database contains the label columns as well for each of the user
defined attributes. The exact structure of each of the relations is depicted
below.

H paper_id \ [_paper_id \ paper_title \ [_paper_title \ author \ [_author \ score \ [_score H

Table 4.1: Structure of Paper table
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H paper_id \ [_paper_id \ review_id \ [_review_id \ reviewer \ [_reviewer | review \ [_review H

Table 4.2: Structure of Paper_Review table

H paper_id ‘ [_paper_id ‘ decision ‘ [_decision ‘

Table 4.3: Structure of Paper_Decision table

Papers submitted by authors are stored in Paper table and they can be
accessed by their respective authors, assigned reviewers and Program Chair.
Reviews submitted are stored in Paper_Review table and are accessible to
reviewers and Program Chair; but, they have been influenced by their re-
spective authors and reviewers. Ultimately, the decision is taken on the
basis of by the Program Chair on the basis of the reviews submitted and is
stored in Paper_Decision table. This decision is accessible only to Program
Chair, which has to be made available to other reviewers and authors by
declassifying them.

4.3 Example

All the above discussed security policies have been implemented and tested to
check whether information flow is successfully getting tracked or not. Some
of the bugs in the classic HotCRP are also prevented by enabling this infor-
mation flow control. This example demo also focuses on the same relations
as discussed above, i.e. Paper, Paper_Review and Paper_Decision with the
similar structure.

4.3.1 Roles in the system

Role Persons

Program Chair Alice
Reviewers Bob, John, Harry
Authors Cathy Sam, James

Table 4.4: Various principals in the example

Reviewers submit the assigned reviews. The content of paper_review re-
lation after submitting is shown in Table 4.5
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Paper ID | Review ID | Reviewer name | Review
1 1 Bob 1
3 2 Bob -1
1 1 John 1
2 2 John -1

Table 4.5: Paper Review Table content

Program chair provides Reviewer Assignment after authors submits their
papers, on the basis of which the initial labels of paper and reviews are
computed. The papers submitted can be read by Program Chair, assigned
reviewers and the author itself and has been influenced by author itself. The
submitted review can be read by Program Chair and the reviewer itself and
has been influenced by the reviewer who submitted that review and the au-
thor of that paper. Initially, paper decisions can only be read by Program
Chair and has been influenced by all the authors who submitted the paper,
all the reviewers who reviewed the paper and Program Chair. All these in-
formation can be declassified later at any point of time to make it available
to other subjects, who have influenced it before. For instance, paper deci-
sion is later declassified by Program Chair to authors and reviewers once the
decision is made. Also after releasing the decision, Program Chair can also
declassify the reviews submitted to authors of top few papers who got the
highest scores.

First, authors submit their papers. In our example, Cathy, Sam and
James submit their respective papers and after submitting, content of paper
relation is shown in Table 4.4

Paper ID Name Author | Score
1 Securing PostgreSQL Cathy | 0
9 Decentralized Information Sam 0
Flow Control
3 Views in MLS databases | James 0

Table 4.6: Paper Table content

Reviewers submit the assigned reviews. The content of paper_review re-
lation after submitting is shown in Table 4.5

Once the reviews of a paper are submitted, Program Chair updates scores

48



Paper ID | Review ID | Reviewer name | Review
1 1 Bob 1
3 2 Bob -1
1 1 John 1
2 2 John -1

Table 4.7: Paper Review Table content

obtained by each paper from all the reviewers. As per the RWFM rule, Pro-
gram Chair can update score if their labels are exactly the same. The syntax
of updating scores is:

UPDATE Paper SET score = (SELECT SUM(review) FROM Paper_review
WHERE paper_id = <paper_id>) WHERE Paper_id = <paper_id>;

Program Chair can declassify the reviews submitted to only those review-
ers who have submitted at least one review. This is achieved by executing
transaction as for declassification, subject has to be in the influencers list.
Therefore, Program Chair first accesses all the reviews submitted which adds
all the reviewers in its writers list. Now, it can perform declassification to
make the reviews available to other reviewers. The syntax for declassification
is as follows:

BEGIN;

SELECT review FROM paper_review;
DECLASSIFY_ALL REVIEW ;

COMMIT;
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Chapter 5

Performance Analysis

Both PostgreSQL and SecPostgreS@L have been run over a number of queries
using TPC-H benchmarking tool for measuring the performance overhead.
Benchmarking were done for the general DML queries such as Select, Insert,
Delete and Update. Time taken was plotted for doing the specified opera-
tion on a discretely step-wise increasing number of tuples. SecPostgreSQL
demonstrated a slight degradation in performance in each type of query. This
can be attributed to the extensive computations for the various checks that
are being done for each tuple. For example, to display contents of a table,
only those tuples should be displayed which satisfies the MLS constraints.
This check is done for each of the tuples that is being fetched. Thus the
performance degrades slightly.

5.1 System Specification

The following are the system specification on which the benchmarks were
run:

e Processor: Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz
e Memory: 8 GB
e PostgreSQL version: 9.4.4

e Database specification: TPC-H benchmarking database

The database schema was used as it is for measuring the performance of
the existing PostgreSQL implementation. But SecPostgreSQL uses a slight
variant of table schema, i.e., it stores extra columns for each attribute to
specify whether it is private or non-private. Thus the Insert query needed to
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be modified to accommodate the same. The rest of the queries are used as
they are used in classic PostgreSQL. Now the performance for each query is
illustrated in the further sections.

5.2 SELECT Query

A complex query has been used to encompass the various flavors of SELECT
queries. The database schema used is same as in TPC-H. Hence the details
regarding the semantic of each attribute is omitted here. The query is:

select
l_returnflag,
I_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base price,
sum(l_extendedprice * (1 - l.discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l.discount) * (1 + l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
group by
l_returnflag,
| linestatus
order by
l_returnflag,
|_linestatus;

An average overhead of 33.6% has been measured as compared to classic

PostgreSQL, in terms of time taken with respect to number of tuples in the
tables.
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Figure 5.1: Performance of SecPostgreSQL with Select queries
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5.3 INSERT Query

Here, the number of insert queries has been gradually increased to measure
the performance overhead SecPostgreS(Q)L in comparison to classical Post-
greSQL. The performance overhead found to be 18.76% on an average.

Performance metrics for INSERT query

110 | | 1 1 |
Original PostgreSC)L. I
100 | SecPostgreS() B |
90 -
80 - _

Execution Time
2
T
|

Number of queries

Figure 5.2: Performance of SecPostgreSQL with Insert queries
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5.4 UPDATE Query

The performance overhead measurement was done in a similar fashion to
that done for Insert. Several numbers of gradually increasing update queries
were ran and performance overhead was observed and was found to be, on
an average, 16.95%.

Performance metrics for UPDATE query

3 1 1 1 1 1
Original PostgreSQL I
SecPostgreSQL
25 .
2 - -

Execution Time
=
n
T
|

Mumber of gqueries

Figure 5.3: Performance of SecPostgreSQL with Update queries
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5.5 DELETE Query

The delete queries were executed on an already populated database table.
On an average, a performance overhead of 23.7% was measured as compared
to classical PostgreSQL.

Performance metrics for DELETE query
2 | | | 1 |
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Execution Time
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Figure 5.4: Performance of SecPostgreSQL with Delete queries
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Chapter 6

Conclusion

SecPostgreSQL has been successfully designed and developed to inhibit all
invalid information flows. It provides support for realizing multi-level se-
cure databases. It handles applications using two different security policies,
depending on the role of subjects available in the system: RWFM based ap-
proach and tuple-level labeling approach. Both of these approaches have been
implemented with decentralized information flow control model RWFM and
tuple-level security to provide support for MLS databases. The performance
is measured with the classical PostgreS@L using the benchmark tool TPC-H
[15] and the results are found satisfactory; i.e. the overhead computed is not
much significant against the privacy benifits SecPostgreSQL introduces.

The correctness has been proved in a generalized manner through various
case studies, for both tuple-level labeling approach as well the RWFM based
approach. Classic PostgreSQL has been extended to incorporate RWFM
model and is tested on a popular application for conference management sys-
tem: HotCRP [16]. All the access to data objects is made to pass through
reference monitor, which prevents bugs from leaking information after exe-
cuting multiple queries in succession.
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Chapter 7
Future Work

Current implementation of SecPostgreS@)L encompasses the universe of CRE-
ATE, SELECT, INSERT, UPDATE, DELETE, VIEW and declassification.
Further works that can further enhance SecPostgreSQL are:

e Handling the complex SQL queries such as triggers and stored pro-
cedures. This could be quite helpful in commercial database systems
such as in case of banks, where many integrity checks are performed at
a trigger level, such as the maximum withdrawal limit of an account
may be, say, ¥20,000. Extending SecPostgreSQL to handle triggers and
stored procedures will make information flow control at that level, and
may also help to prevent information leak via covert channels.

e Another area where further work can be done is in the case of variants
of SQL, such as PL/SQL. Support for such variants can also help make
SecPostgreSQL more generalized and flexible to use.
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